
ENP Engineering Science Journal, Vol. 1, No. 1, July, 2021 13

Conditional and Unconditional Deterministic
Lower Bounds on the MSE of the Non-Uniform
Linear Co-centered Orthogonal Loop and Dipole

Array
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Abstract—The co-centered orthogonal loop and dipole (COLD) array exhibits some interesting properties, which makes
it ubiquitous in the context of polarized source localization. In the literature, one can find a plethora of estimation
schemes adapted to the COLD array. Nevertheless, their ultimate performance in terms of the so-called threshold region
of mean square error (MSE), have not been fully investigated. In order to fill this lack, we focus, in this paper, on condi-
tional and unconditional bounds that are tighter than the well known Cramér-Rao Bound (CRB). More precisely, we give
some closed form expressions of the McAulay-Hofstetter, the Hammersley-Chapman-Robbins, the McAulay-Seidman
bounds and the recent Todros-Tabrikian bound, for both the conditional and unconditional observation model. Finally,
numerical examples are provided to corroborate the theoretical analysis and to reveal a number of insightful properties.

Keywords—Deterministic lower bounds, co-centered orthogonal loop and dipole array, mean square error, perfor-
mance analysis, passive source localization, SNR threshold.

I. INTRODUCTION

Nowadays, recent source localization systems need to operate
in increasingly more crowded signal environments [2]. In this
context, taking into account both the polarization diversity and
the spatial diversity became ubiquitous in antenna array sys-
tems and their processing as wireless communication, radar,
sonar systems, etc. [2–4]. Among different types of polariza-
tion sensitive arrays, the co-centered orthogonal loop and dipole
array is commonly used since it exhibits numerous interesting
properties [5–7] (e.g., the constant norm of the polarization vec-
tor, the insensibility of the polarization vector w.r.t. the source
localization in the plan of the antenna etc.)

In the literature, one can find a plethora of estimation schemes
adapted and/or designed particularly for the COLD array [6].
Nevertheless, their ultimate performance in terms of the mean
square error (MSE), especially in the non-asymptotic region
(meaning for low signal-to-noise ratio (SNR) or low observa-
tions), has not been fully investigated.

We can cite [8, 9], in which the authors derived closed-form
expression of the approximated Cramér-Rao bound (CRB) for a
sufficiently large number of sensors in the context of a COLD
linear and uniform array. Whereas in [10,11] the authors derived,
respectively, expressions of the CRB for a known single source
and the resolution limit for two known sources, both for known
polarization state parameters.
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Nevertheless, to the best of our knowledge, no results concerning
the breakdown prediction for the COLD linear array (possible
non-uniform) can be found in the literature. To fill this lack, we
focus, in this paper, on lower bounds that are tighter than the
CRB. More precisely, we give some closed form expressions
of the McAulay-Hofstetter (MCB), the Hammersley-Chapman-
Robbins (HCRB), the McAulay-Seidman (MSB) bounds and
a recently proposed Todros-Tabrikian bound (TTB), for both
the commonly assumed conditional (i.e., when the signals are
assumed to be deterministic) and unconditional (i.e., when the
signals are assumed to be driven by a Gaussian random process)
observation models with unknown direction of arrival (DOA)
and unknown polarization state parameters. Such bounds are
known to be efficient to delimit and predict the optimal operating
zone of estimators [12, 13] which is given by the threshold
or breakdown point, i.e., when the estimator’s MSE increases
dramatically.

Such deterministic lower bounds can be derived using one of
the unifications given in [12, 14–16]. In this paper, we adopt the
Todros and Tabrikian unification in which they propose a novel
class of performance lower bounds by applying a proper integral
transform [15]. Using an adequate choice of the kernel of the
integral transform of the likelihood-ratio function, one obtains
some well known lower bounds as the MCB, HCRB, MSB and
TTB.

For the rest of this paper, the following notation will be used. A
lowercase bold letter denotes a vector, and an uppercase bold
letter denotes a matrix. Vectors are by default in column orienta-
tion unless specified. Upper scripts T ,C and H are, respectively,
the transpose, the conjugate and the trans-conjugate of a matrix.
The operators tr {.} , |.|, ‖.‖ and R(.) represent, the trace, the
determinant of a matrix, the Euclidean norm and the real part,
respectively. � and ⊗ are the Hadamard and the Kronecker
product, respectively. IL denotes the L× L identity matrix. 1L
is the L× L matrix filled by ones. [.]i and [.]i,j denote the i-th
element of the vector and the i-th row and the j-th column ele-
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Fig. 1: A non-uniform linear COLD array representation in the
presence of one far-field source

ment of the matrix. We define also the n-norm as
∑
ηn = ||η||n.

Finally, ξ̂ is any unbiased estimate of ξ.

II. SYSTEM MODELS

Consider a non-uniform linear array composed of N COLD
pairs with inter-element spacing d1.d, d2.d, . . . , dN .d that re-
ceives a signal emitted by a single far-field and narrow-band
source. Let dn.d denotes the location of the n-th COLD sensor,
in which d is unit. The array is collinear with the y-axis of an
(O, xyz) coordinate system with its origin, O, in the center of
the first pair of sensors (i.e., d1 = 0). For each COLD sensor,
the dipole is parallel to the z-axis and the loop is parallel to the
x− y plane.

Assume a narrowband far-field source which impinges on the
array from direction described by the elevation angle φ and
the azimuth angle θ. In this paper, we suppose that the source
is contained in the x − y azimuthal plane, i.e. φ = π

2 , as
illustrated in Fig.1. For a given polarized signal, the vertical and
the horizontal components of the incoming signal electric field
can be specified by polarization state parameters ρ ∈

[
0, π2

]
and

ψ ∈ [−π, π]. Consequently, the output of the n-th COLD sensor
can be expressed by [6]

xn(t) = [xloop, xdipole]T = s(t)u(ψ, ρ) ejωdn.d+nn(t), (1)

in which, n = 1, . . . , N, t = 1, . . . , T , xloop and xdipole are
the signals recorded on the small loop and the short dipole, re-
spectively. The electrical angle ω = − 2πd

λ sin θ, where λ is the
signal wavelength. T is the number of snapshots and s(t) is the
source signal. The random process nn(t) = [nloop, ndipole]T

denotes a complex Gaussian circular noise with zero mean and
a known covariance matrix Σnoise. The output vector received
for the t-th snapshot can be written as

x(t) = [xT1 (t), . . . ,xTN (t)]T

= s(t)e(ω)⊗ u(ψ, ρ) + [nT1 (t), . . . ,nTN (t)]T

where the steering vector is defined by e(ω) =
[1, ejd2ω, . . . , ejdNω]T and the 2 × 1 polarization state
vector is given by u(ψ, ρ) = [j2πAsl cos(ρ)

λ ,−Lsd sin(ρ)ejψ]T ,
in which Lsd and Asl represent the length of the short dipole
and the area of the small loop. From a modeling point of view,
we can assume Lsd = 2πAslλ = 1.

In the following, the unknown parameter vector is given by
ξ = [ω, ψ, ρ]T , whereas, ξ0, ω0, ψ0 and ρ0 denote the real value
of the candidate parameters ξ, ω, ψ and ρ, respectively. The joint
probability distribution function (pdf) of the full observations

χ = [xT (1), . . . ,xT (T )] ∼ CN (µ(ξ0),Σ(ξ0)) for a given ξ0,
is expressed as follow

p(χ|ξ0) =
1

|Σ(ξ0)|π2NT
e−(χ−µ(ξ0))HΣ(ξ0)−1(χ−µ(ξ0)) (2)

Let E
{

(ξ̂0 − ξ0)(ξ̂0 − ξ0)T
}

be the covariance matrix of an

estimate of ξ0. Let us assume that ξ̂ is an asymptotically un-
biased estimate of the true parameter vector ξ0, and define
the CRB for the considered model [17–19]. The covariance
inequality principle states that, under quite general/weak condi-
tions [20],

MSE = E
{

([ξ̂0]i − [ξ0]i)
2
}
≥ CRB([ξ0]i), i = 1, 2, 3

where the CRB is given as the inverse of the Fisher information
matrix (FIM) as CRB([ξ0]i) = [FIM−1(ξ0)]i,i. Since we are
working with a complex circular Gaussian observation model
and using the Splepian-Bang formula [21, 22], the i-th, k-th
element of the FIM for the unknown real parameter vector ξ0

can be written as

[FIM(ξ0)]i,k =

tr

{
Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}

+ 2R

{
∂µH(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂µ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
(3)

There exist two different models depending on the assumptions
about the signal sources, the conditional (deterministic) and
unconditional (stochastic) cases.

A. The Conditional Case

The time-varying signal is modelled by s(t) =
a(t)ej(2πf0t+γ(t)), where a(t) denotes the real ampli-
tude, γ(t) is the time-varying modulating shift phase and
f0 is the carrier frequency of the incident wave. Under this
assumption, one has the following parameterized mean model
given by χ ∼ CN (µ(ξ0),Σnoise), and in which

µ(ξ0) = s⊗ (e(ω0)⊗ u(ψ0, ρ0)) (4)

where s = [s(1), . . . , s(T )]T . Consequently, the FIM in (3)
reduces to

[FIM(ξ0)]i,k = 2R

{
∂µH(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂µ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
(5)

∀i = 1, 2, 3, k = 1, 2, 3.

B. The Unconditional Case

In the unconditional model, the signal is assumed to be complex
circular Gaussian (with zero mean and variance σ2

sI) indepen-
dent from the noise. Consequently, the covariance parameterized
observation model given by χ ∼ CN (0,Σ(ξ0)), in which

Σ(ξ0) = σ2
s(e(ω0)⊗u(ψ0, ρ0))(e(ω0)⊗u(ψ0, ρ0))H+Σnoise

(6)
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Then, by applying (3), one obtains

[FIM(ξ0)]i,k = (7)

Ttr

{
Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]i

∣∣∣∣ξ=ξ0Σ(ξ0)−1 ∂Σ(ξ)

∂[ξ]k

∣∣∣∣
ξ=ξ0

}
∀i = 1, 2, 3, k = 1, 2, 3.

III. DETERMINISTIC LOWER BOUNDS
BACKGROUND AND DERIVATION

The unification presented in [15] gives analytical expressions of
the McAulay-Seidman bound (MSB, C(L)

MSB), the Hammersley-
Chapman-Robbins bound (HCRB, C(L)

HCRB), the McAulay-
Hofstetter bound (MHB, C(L)

MHB) and the Todros-Tabrikian
Bound (TTB, C(L)

TTB). Specifically, we can notice that:

C
(L)
MSB = ΦΨ−1ΦT (8)

where Φ = [ξ1 − ξ0, . . . , ξL − ξ0] in which ξl denotes
the l-th test point for l = 1, . . . , L. Whereas, [Ψ]m,n =
Eχ|ξ0 {ν(χ, ξm)ν(χ, ξn)} for m = 1, . . . , L, n = 1, . . . , L
and ν(χ, ξl) denotes the ratio-likelihood function, given by
ν(χ, ξl) = p(χ|ξl)

p(χ|ξ0) . Furthermore, the HCRB and the MHB are
given by

C
(L)
HCRB = Φ(Ψ− 1L1TL)−1ΦT (9)

and
C

(L)
MHB = CCRB +QR−1QT (10)

where CCRB = FIM−1 andQ = CCRBD −Φ,

R = Ψ−DTCCRBD (11)

in which D = [d(ξ1), . . . ,d(ξL)], and each element of D is
given by

d(ξl) =

(
∂KLD (p(χ|ξl)‖p(χ|ξ))

∂ξ
|ξ=ξ0

)T
(12)

The term KLD(p(χ|ξl)‖p(χ|ξ)) denotes the Kullback-Leibler
divergence [23] of p(χ|ξ) from p(χ|ξl). Finally, the TTB is
given by

C
(L,J)
TTB = CCRB +QWH

(
WRWH

)−1
WQT (13)

in which, the three-dimensional-discrete-Fourier-transform
(DFT) matrix is given by [15]

[W ]i,l = e−jΩ
T
i ξl (14)

in which Ωi is expressed for the i-th frequency test bin by

ΩT
i = 2π

[
iω

∆ωLω
,

iψ
∆ψLψ

,
iρ

∆ρLρ

]
,

in which Lω, Lψ and Lρ represent the number of test points
w.r.t. the unknown parameters ω, ψ and ρ, and L = LωLψLρ.
The uniform inter-test points w.r.t. the unknown parameters
are represented by ω, ψ and ρ ∆ω,∆ψ and ∆ρ, respectively.
Similarly, iω, iψ and iρ denote the index of test-bin in the three-
dimensional of the frequency domain, iω ∈ 1, . . . , Lω, iψ ∈
1, . . . , Lψ and iρ ∈ 1, . . . , Lρ. Consequently, the index i is a
unique combination of iω, iψ, iρ where the total number of these
combinations is denoted by J .

In the remaining of this section, we derive analytical expressions
of the MSB, the HCRB, the MHB and the TTB for conditional
and unconditional observation model.

A. The Conditional Case

Let us partition the FIM w.r.t. the signal parameter ξ0 as follow

FIM(ξ0) =

Fω,ω Fω,ψ Fω,ρ
Fψ,ω Fψ,ψ Fψ,ρ
Fρ,ω Fρ,ψ Fρ,ρ

 (15)

in which, we used the notation Fu,v , where the lower script u, v
denotes the considered part of the FIM which corresponds to
the derivation according to parameters u and v as shown in (3).
Using (5), the entries of the FIM are given by

Fω,ω =2<[(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))HΣ−1
noise

(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))]

Fψ,ψ =2<[(s⊗ (e(ω0)⊗ ∂u(ψ, ρ0)

∂ψ
))H |ψ=ψ0

Σ−1
noise

(sH ⊗ (e(ω0)⊗ ∂u(ψ, ρ0)

∂ψ
))|ψ=ψ0

]

and

Fρ,ρ =2<[(sH ⊗ (e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ
)H)|ρ=ρ0Σ−1

noise

(s⊗ (e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ
))|ρ=ρ0 ]

in which e′(ω0) = [d1e
jd1ω0 , . . . , dNe

jdNω0 ]T . The cross
terms are given by

Fψ,ρ = Fρ,ψ =2<[(s⊗ (e(ω0)⊗ ∂u(ψ, ρ0)

∂ψ
))H |ψ=ψ0Σ

−1
noise

(s⊗ (e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ
))|ρ=ρ0 ]

Fω,ρ = Fρ,ω =2<[(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))HΣ−1
noise

(s⊗ (e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ
))|ρ=ρ0 ]

and

Fω,ψ = Fψ,ω =2<[(s⊗ (je′(ω0)⊗ u(ψ0, ρ0)))HΣ−1
noise

(s⊗ (e(ω0)⊗ ∂u(ψ0, ρ)

∂ρ
))|ρ=ρ0 ]

In particular, if nn(t) is a complex circular white Gaus-
sian noise with zero-mean and unknown variance σ2

n, as-
sumed to be uncorrelated both temporally and spatially (i.e.,
Σnoise = σ2

nI2NT ). The above expressions simplifies to
Fω,ω = 2

σ2
n
||dN ||22||a||22, Fψ,ψ = 2N

σ2
n

sin(ρ0)2||a||22 and

Fρ,ρ = 2N
σ2
n
||a||22. Whereas, the cross terms are given by

Fω,ψ = Fψ,ω = 2
σ2
n

sin(ρ0)2||dN ||21||a||22 and Fω,ρ = Fρ,ω =

Fρ,ψ = Fψ,ρ = 0 with a = s and dN = [d1, d2, . . . , dn]T .
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Considering an identifiable situation in which |FIM| 6= 0, one
obtains after some calculus (the general case, i.e., 2πAslλ 6= Lsd,
is given in the Appendix)

CRB(ξ0) =
σ2
n

2||a||22
(16)

N
N ||dN ||22−sin(ρ0)2||dN ||41

− ||dN ||21
N ||dN ||22−sin(ρ0)2||dN ||41

0

− ||dN ||21
N ||dN ||22−sin(ρ0)2||dN ||41

||dN ||22
N sin2(ρ0)||dN ||22−sin(ρ0)2||dN ||41

0

0 0 1
N



On the other hand, in (12) the KLD for conditional case is given
by

KLD(p(χ|ξl)||p(χ|ξ)) =

∫
p(χ|ξl) ln(

p(χ|ξl)
p(χ|ξ)

)dχ (17)

= (µ(ξ)− µ(ξl))
HΣ−1

noise(µ(ξl)− µ(ξ))

thus,

d(ξl) = −
(
∂KLD(p(χ|ξl)||p(χ|ξ))

∂ξ

)T
|ξ=ξ0 (18)

= −2<
{

(µ(ξ)− µ(ξl))
HΣ−1

noise

∂µ(ξ)H

∂ξ

}T
|ξ=ξ0

Using, (11), each element of Ψ is of the form

[Ψ]m,n = Eχ|ξ0 {ν(χ, ξm)ν(χ, ξn)}

=
1

π2NT |Σnoise|

∫
eκ1

= α(ξm, ξn)

∫
1

π2NT |Σnoise|
eκ2dχ

= α(ξm, ξn) (19)

in which

κ1 =− (χ− µ(ξm))HΣ−1
noise(χ− µ(ξm))

− (χ− µ(ξn))HΣ−1
noise(χ− µ(ξn)) + (χ− µ(ξ0))H

Σ−1
noise(χ− µ(ξ0))dχ

and

κ2 =− (χ− µ(ξm)− µ(ξn) + µ(ξ0))H

Σ−1
noise(χ− µ(ξm)− µ(ξn) + µ(ξ0))

and

α(ξm, ξn) = e2<{(µ(ξm)−µ(ξ0))HΣ−1
noise(µ(ξn)−µ(ξ0))} (20)

At last, plugging (4), (16)-(20) into (8)-(10) and (13) one ob-
tains C(L)

C−MSB, C(L)
C−HCRB, C(L)

C−MHB and C(L,J)
C−TTB, in which

C stands stands for Conditional.

B. The Unconditional Case

Let us consider the unconditional model. For simplicity we
define Γ(ξ0) = e(ω0) ⊗ u(ψ0, ρ0) and let us recall the fol-
lowing matrix properties Tr(XY ) = vec(XH)Hvec(Y ),

vec(XY Z) = (ZT ⊗ X)vec(Y ), which hold for any ma-
tricesX,Y and Z [24]. Using these properties along with (7),
we obtain

1

T
FIM(ξ0) =(

∂r

∂ξT
)H |ξ=ξ0(Σ(ξ0)−T⊗

Σ(ξ0)−1)(
∂r

∂ξT
)|ξ=ξ0

=

gHω gω gHω gψ gHω gρ
gHψ gω gHψ gψ gHψ gρ
gHρ gω gHρ gψ gHρ gρ


where

r = vec(Σ(ξ0)) = σ2
s(Γc(ξ0)⊗ Γ(ξ0)) + vec(Σnoise)

and

gω = vec

(
Σ(ξ0)−

1
2
∂Σ(ξ)

∂ω
|ξ=ξ0Σ(ξ0)−

1
2

)
.

If the sensor noise is both spatially and temporally white, as
Σnoise = σ2

nI2N , using the matrix inversion lemma [25] into
(6), one can obtain

Σ(ξ0)−1 =
1

σ2
n

I2N −
σ2
s

σ4
n +Nσ2

sσ
2
n

Γ(ξ0)ΓH(ξ0)

On the other hand, in (12) the KLD is obtained
KLD(p(χ|ξl)||p(χ|ξ)) = Eχ|ξl

{
χH(IT ⊗Σ(ξ))−1χ

}
−

Eχ|ξl
{
χH(IT ⊗Σ(ξl))

−1χ
}

+ T ln |Σ(ξ)| −
T ln |Σ(ξl)| in which Eχ|ξl

{
χH(IT ⊗Σ(ξ))−1χ

}
=∑2NT

i=1

∑2NT
j=1 Eχ|ξl

{
[χ]ci [χ]cj [(IT ⊗Σ(ξ))−1]i,j

}
=

Ttr
{
Σ(ξl)Σ(ξ)−1

}
and similarly, one obtains

Eχ|ξl
{
χHΣ(ξl)

−1ξ
}

= 2NT. Consequently,

KLD(p(χ|ξl)||p(χ|ξ)) = Ttr(Σ(ξl)Σ(ξ)−1)− 2NT (21)

+ T ln(
|Σ(ξl)|
|Σ(ξ)|

)

In addition, the l-th member ofD in (12) is given by

∂KLD(p(χ|ξl)||p(χ|ξ))

∂ξ
= Ttr

{
Σ(ξ)−1 ∂Σ(ξ)

∂ξ

}
+ Ttr

{
−Σ(ξl)Σ(ξ)−1 ∂Σ(ξ)

∂ξ
Σ(ξ)−1

}
(22)

and from (11), the element of Ψ is

[Ψ]m,n = Eχ|ξ0 {ν(χ, ξm)ν(χ, ξn)}

=
|IT ⊗Σ(ξ0)|2

|IT ⊗Σ(ξm)||IT ⊗Σ(ξn)|

∫
eκ3p(χ|ξ0)dχ

=
|Σ(ξ0)||Σ(ξm)−1 + Σ(ξn)−1 −Σ(ξ0)−1|

|Σ(ξm)||Σ(ξn)|
(23)

with

κ3 =− χH((IT ⊗Σξm))−1 + (IT⊗
Σ(ξn))−1 − 2(IT ⊗Σ(ξ0))−1)χ

Finally, C(L)
U−MSB, C(L)

U−HCRB, C(L)
U−MHB, and C(L,J)

U−TTB are
given by replacing (6), (21) - (23) into (8), (9), (10) and (13), in
which U stands stands for Unconditional.
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IV. NUMERICAL INVESTIGATION

Numerical results are presented in this section for a non-uniform
linear COLD array with N = 8 sensors. One narrowband far-
field source is located according to θ0 = 60◦ and the polariza-
tion state parameters are given by ρ0 = 30◦ and ψ0 = 45◦.
Simulations are performed for T = 15 snapshots.

A. Analytical and numerical analysis of the derived lower
bounds

The aim of this part is to examine the usefulness of C(L)
MSB,

C
(L)
HCRB, C(L)

MHB and C(L,J)
TTB to predict the SNR threshold. Us-

ing, (10), (11), (13) and (17), we plot the derived lower bounds
for the parameter ω0 for both conditional and unconditional
models in Fig.2 and Fig.3, respectively. These figures show that
the derived bounds exhibit a threshold effect around −9dB. We
note also that the new proposed TTB provides a better prediction
of the SNR threshold as expected. Furthermore, for J < L, the
computational cost of the TTB is lower in comparison to the
MSB, HCRB and MHB. This is mainly due to the inversion of a
J × J matrix due to presence of the discrete transform matrix
W instead of the initial L× L matrix inversion.

In Fig.4 and 5, we plot the TTB w.r.t. ω vs. SNR for different
polarization parameters ψ0 and ρ0 in the conditonal case (the
same conclusion are noticed for the unconditional case). From
Fig.4, we notice that, no matter how ψ0 changes, the breakdown
point is approximately fixed for a given ω0, meaning that the
effect of the polarisation state parameter ψ can be neglected
in designing the COLD array. In Fig.5 we focus on the effect
of ρ, in which, this figure shows that, for a different value of
polarization parameter ρ and for a fixed SNR, the higher the
ρ0 is, the better are the performances (w.r.t. the MSE in the
asymptotic region but also breakdown point).

B. Frequency test-bins and their effect on the TTB

One notes that increasing the number of sensors or test-points
may improve the tightness of the bounds. This is also same
for frequency-bins. However, this improvement comes at the
expense of computational complexity. Considering there is an
intuitive link between the performance of threshold prediction
and the sequence of frequency test-bins. We give a sub-optimal
method to design an optimal index of frequency test-bins in
order to overcome an exhaustive search by computer over all
possibilities. First, place only one frequency test-bin by mini-
mizing the threshold SNR with respect to J positions. Second,
iterate the first step by placing the n-th frequency test-bin at once
sequentially until n = L with respect to J − n+ 1 remaining
positions. To illustrate and compare the accuracy and usefulness
of the aforementioned approach, two numerical examples for
TTB are obtained: case 1- With the same number of test-points
L = 32, one notice that our sub-optimal method yields a very
good agreement when compared with the searching solution
performed by computer, as shown in Fig.6. Furthermore, this
figure also shows us that increasing the number of frequency
test-bins gives a considerable improvement in the SNR threshold
prediction; case 2- In Fig.7, with the same number of test-points
and frequency test-bins L = J = 32, the threshold prediction
of optimal index is nearly 1dB better than the sequential one,
which means that the index of frequency test-bins has an im-
portant effect on minimizing the ambiguity region threshold.

Fig. 2: Lower bounds on the mean square error (conditional
case) w.r.t. ω for NULA-COLD array (L = J = 8).

As the number of snapshots T increases, this advantage will
be more apparent. Consequently, we notice that the proposed
method with low complexity is useful for a threshold prediction
problem, especially for the sensor arrays with large test-points.

C. Designing a COLD array : Resolution factor vs threshold
SNR

To better comprehend the system performance w.r.t the resolu-
tion factor (RF) and the threshold SNR as a function of array
geometry we consider Fig.8 in which we compare all possible
configuration for N = 8 and a given aperture A = 23 (more
precisely, such context gives 74613 possible sensor array con-
figurations). The term resolution factor is the minus curvature
of the magnitude squared of the beampattern at the peak of its
mainlobe and is determined by the array geometry [26] as:

RF =
8d2π2

N2λ2
dTN (NIN − 1N )dN

in which dN = [d1, . . . , dN ]T denotes theN×1 vector of array
element index locations.

In general, we would like the threshold SNR to be as small as
possible and the RF to be as large as possible [26]. We see that
the best performance is achieved at the upper-left corner of the
distribution given in Fig.8, where there is a tradeoff between
resolution and threshold prediction.

As an example, eight types of array configuration are considered,
as shown in Table 1. From comparison of simulation results, one
can further notice that: 1) For the same array aperture and same
number of sensors, the SNR threshold prediction and resolution
factor are greatly affected by the array geometric configuration.

2) The configuration that puts two sensors at the extremity and
the rest in the middle has the worst performance for resolution
factor; Contrary, places two average parts of sensors on both
sides seems to be the best geometry configuration (at least, it is
the case for N = 8 and A = 23 sensors). From example, Type
1 to Type 4 arrays, which have the good performance for the
threshold SNR, are nearly 3dB better than the relatively poor
performance of type 7 and type 8, where this is due to the sensor
geometry configuration.
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Fig. 3: Lower bounds on the mean square error (unconditional
case) w.r.t. ω for NULA-COLD array (L = J = 8).

Fig. 4: TTB on the mean square error (conditional case) w.r.t.
ψ for NULA-COLD array. (L = J = 8)

Fig. 5: TTB on the mean square error (conditionalc case) w.r.t.
ρ for NULA-COLD array. (L = J = 8)

Fig. 6: Comparisons of different number of frequency test-bins
for TTB threshold prediction with test-points L = 32.

Fig. 7: Comparisons of different index of frequency test-bins
for TTB threshold prediction with test-points L = 32, frequency
test-bins J = 32.

Fig. 8: Comparisons of different array geometric configurations
for resolution factor w.r.t. SNR threshold predicted by the TTB
(conditional case: N = 8, A = 23).
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Array Type Geometric Configuration Resolution Factor Threshold SNR
Type 1 • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦• among the best configuration
Type 2 • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦• among the best configuration
Type 3 • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦• the best configuration
Type 4 • • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦• among the best configuration
Type 5 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •• the best configuration
Type 6 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• the worst configuration
Type 7 • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ ◦ •• among the worst configuration
Type 8 • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •• among the worst configuration

Table 1. Different array geometric configurations among the 74613 possibilities for N = 8 and A = 23(• and ◦ represent the
position of sensor and missing sensors, respectively.)

V. CONCLUSION

In this paper, we derive explicit closed-form expressions of dif-
ferent deterministic lower bounds on the mean square error for
the so-called non-uniform linear co-centered orthogonal loop
and dipole arrays in a passive polarization source localization
context. Taking advantage of these expressions, we analyse
and characterize the performances in the asymptotic region and
non-asymptotic region in terms of breakdown point prediction
for the conditional and unconditional observation models. Fi-
nally, numerical simulations show the effect of each polarization
parameters and the array geometry on the optimal designing
strategy.

VI. APPENDIX

The general case of the CRB, i.e., in the case of 2πAslλ = Lsd
is given as

CRB(ξ) =
1

D

 Fψ,ψ −Fψ,ω 0
−Fω,ψ Fω,ω 0

0 0 D
Fρ,ρ


in which

D = Fω,ωFψ,ψ − Fψ,ωFω,ψ

Fω,ω =
2

σ2
n

||s||22||dN ||22(4π2A
2
sl

λ2
cos2(ρ) + L2

sd sin2(ρ))

Fρ,ρ =
2N

σ2
n

||s||22||(4π2A
2
sl

λ2
sin2(ρ) + L2

sd cos2(ρ))

Fψ,ψ =
2N

σ2
n

||s||22||L2
sd sin2(ρ)

Fψ,ω = Fω,ψ =
2

σ2
n

||s||22||dN ||21L2
sd sin2(ρ)
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