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Near Real-Time Low Frequency Load
Disaggregation

Selim Sahrane, Mourad Haddadi

Abstract—Device-level power consumption information can lead to considerable energy savings. Smart meters are being
adopted in several countries, but they are only capable of measuring the total power consumption. NonIntrusive Load
Monitoring (NILM) aims to infer the power consumption of individual electrical loads by analyzing the aggregate power
signal taken from a single-point measurement. Most existing NILM solutions are offline methods that do not allow the
end-user to get real-time feedback on his energy consumption. In this paper, we present a near real-time NILM solution
based on multi-label classification and multi-output regression. We use the multi-label classifier to predict the state of
each load and use the multi-output regressor to estimate the disaggregated active power consumptions. We test our
method using a publically available dataset of real power measurements. Performance results show that the proposed
near real-time method can accurately estimate the energy consumption of the targeted loads with an average relative
energy error of 1.55%

Keywords—NILM, Load Disaggregation, Multi-label Classification, Multi-output Regression, Energy Estimation,
Smart Meters.

I. INTRODUCTION

The worldwide increase in energy demand and climate change
has resulted in new technologies which aim to reduce the use of
fossil fuels as well as reducing the overall energy consumption.
If actions are not undertaken, the CO2 emissions will double
by 2050 [1]. Residential buildings consume up to 40% of
total energy [1]. Studies show that consumers don’t know
the necessary actions which will reduce their energy bill [2].
Furthermore, 55.2% of people do prefer reducing the usage of
inefficient appliances while only 11.7% prefer replacing their
old appliances. This highlights the importance of providing
relevant feedback information to the consumer on his energy
consumption. The most common type of feedback is provided
through energy bills (e.g., KWatt/hour) [2] which does not
provide detailed information to the user. The effect of energy
feedback on household consumption is covered in detail in [3].
Furthermore, providing appliance-level consumption infor-
mation can result in more than 12% of energy savings [4] [5] [6].

Non-intrusive load monitoring (NILM) also called load or en-
ergy disaggregation aims to infer the energy consumption of
single appliances from the aggregate energy use measured at the
power source interface [7]. One instrumented point is sufficient
to get the energy consumption of each appliance. Intrusive load
monitoring (ILM) on the other hand uses one measuring system
for each appliance which has the advantage to be more accurate
but is more expensive and difficult to deploy at a large scale.
This is why NILM is preferred when it comes to load disaggre-
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gation [8]. Each type of appliance or electrical load is different
in the way it consumes electricity due to its internal circuitry
and therefore has what is called “an appliance signature” [7].
A NILM system will typically rely on machine learning and
signal processing techniques in order to extract features from
each appliance’s signature and to disaggregate the total energy
signal by identifying different signatures. Most of the existing
disaggregation approaches are offline methods [9], meaning that
they use the entire dataset or day measurements before inferring
the consumption of each appliance. This translates into a very
low frequency of feedback that does not allow the consumer to
take actions in real or near-real time. Real-time or near real-time
disaggregation information is needed for the consumer in order
to reduce his consumption for more than 9.2% [4] [5]. Zeif-
man [10] proposed six requirements for a load disaggregation
system to be practical with the existing smart meter technology:

1. A sampling rate of 1 Hz: most smart meters use a 1 Hz
sampling rate. The sampling frequency affects the feature
extraction process and hence the NILM should be designed
to work with 1 Hz data.

2. Accuracy: for an acceptable user experience the system
should have a minimum accuracy of 80-90%.

3. Easy configuration: minimum training or no training (i.e.,
unsupervised) and capability to adapt to new appliances
and discard old ones.

4. Near real-time feedback: the system is able to give feed-
back on the energy use of each appliance in a minimum
time interval.

5. Robustness: the ability to detect a large number of appli-
ances (e.g., more than 20 devices).

6. Multi-type appliance recognition: some types of appli-
ances are trickier to detect than others, light dimmers
which do not have a finite sate of consumption are more
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difficult to identify than multi-sate appliances like dish-
washers. A practical NILM should be able to detect all
types of appliances.

These requirements are extensively used among the NILM com-
munity and are used as a reference to evaluate load disaggrega-
tion methods and there is still no complete solution that satisfies
all the six requirements. The fourth requirement (i.e., near real-
time capability) is not largely addressed in the NILM literature
and this is what motivated us to work on this issue.

In [11] an unsupervised near real-time solution is proposed. This
solution is based on the use of low-frequency features (i.e., reac-
tive and active power) as well as high-frequency features (i.e.,
transients). A clustering algorithm and a manual labeling proce-
dure are used to construct an appliance signature database. The
advantage of this solution is that it is unsupervised. However,
some features like transients cannot be obtained with existing
smart meters. In [12] a practical implementation of a spectral
decomposition-based real-time NILM solution is proposed. The
authors use active power and voltage measurements obtained
at a frequency of 1 Hz. This method shows good results but
has a high implementation cost due to the complexity of the
used method. In [13], the author describes a NILM system able
to perform disaggregation on a low-cost embedded processor
in real-time using low-frequency sampling data. The method
uses a super-state hidden Markov model and a Viterbi algorithm
variant which preserves dependencies between loads. This ap-
proach is not scalable to a large number of appliances. In [14], a
particle-based distribution truncation method is proposed. This
solution uses 1 Hz measurements and has the ability to run in
real-time. This approach presents good performance but has a
high implementation cost. In fact, the authors implemented their
solution on an Intel Core i7-2600 with 8GB of random access
memory. In [15], a method based on particle filtering is pro-
posed. This method uses 1 Hz measurements and is capable of
running in real-time. For the implementation, it is reported that
the algorithm can work in real-world applications on low-cost
hardware such as a Raspberry Pi. In this work, we explore if
the power consumptions of a given household’s electrical loads
can be accurately estimated in near real-time. Meaning that our
NILM method should predict the current disaggregated power
of each load for each aggregate power sample input.

The remaining of this paper is organized as follows: in section
II., we formulate the load disaggregation problem, in section III.,
the proposed method is described in detail. In section IV., results
are presented and a discussion is made. Finally, a conclusion is
given in section V..

II. PROBLEM FORMULATION

The aim of NILM is to separate each load’s signal Sj(t) from the
aggregate signal Sagg(t) to then find the energy consumption of
each load. The aggregate signal Sagg(t) is expressed as:

Sagg(t) =

M∑
j=1

Sj(t) + e(t) (1)

With M representing the number of loads and e(t) a error term
that accounts for unwanted noise. Fig. 1 shows how each ap-

pliance’s Signal Sj(t) contributes to form the aggregate signal
Sagg(t).
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Fig. 1: Top figure shows the aggregate power signal and down
figure shows the ground truth of each load.

III. PROPOSED METHOD

Our disaggregation method combines a multi-label classification
algorithm with a multi-output regression algorithm as shown in
Fig. 2. The classification step serves to predict the state of each
load (ON/OFF), and the regression method returns the power
consumption of each load in a near real-time fashion. More
specifically, for each single aggregate power measurement, our
method predicts the corresponding disaggregated power values
for each load.

A. Multi-label Classification

We choose a multi-label classification approach because it is
more appropriate for the load disaggregation problem. In gen-
eral, multiple loads can be operating concurrently in a household,
which makes their identification challenging. In a classification
context, each load is represented by a unique class/label. A
multi-label classification approach allows the association of
multiple labels to one data instance thus, permitting to account
for cases where more than one load is operating. Formally, given
a set of labels Y , each data instance x is associated with a subset
l ⊂ L, with L the power set of Y . Two types of multi-label
classification methods exist, namely, problem transformation
methods and algorithm adaptation methods [16]. Problem trans-
formation methods transform the multi-label classification prob-
lem into multiple binary classification problems. Algorithm
adaptations modify an existing multi-class algorithm to support
multi-label classification. In this work, we use a random forest
classifier algorithm implementation adapted to support multi-
label classification. The random forest algorithm [17] is an
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Fig. 2: Block diagram of the proposed method.

ensemble method that grows multiple decision trees on various
sub-samples of the dataset and then averages the predictions to
improve the predictive accuracy and control over-fitting. We
use the multi-label classification to map each aggregate power
sample x1i ∈ X1 to a label subset l, with X1 representing a
vector of N active power measurements. The ground truth label
subset corresponding to each x1i is found in the labels matrix
Y1 = [y1i, ..., y1N ]T with y1i an M-binary vector containing the
ON/OFF state of the M loads. Ŷ1 represents the predicted states
of the M loads given X1 as input to the classifier, as shown in
Fig. 2.

B. Multi-output Regression

The goal of multi-output regression is to predict more than two
numerical values given an input instance. As for multi-label
classification, we find problem transformation methods and algo-
rithm adaptation methods for solving the multi-output problem.
An in-depth review of multi-output regression approaches is
found in [18]. In this work, we use a problem transformation
approach that consists of performing a separate regression for
each target. Treating each target load independently is possible
because the power consumptions of each load are mutually in-
dependent. The feature matrix X2 is built using the predictions
Ŷ1 and the aggregate power values X1 as shown in Fig. 2. The
ground truth power trace of each load Pj = [p1, ..., pN ]T is
contained in the matrix Y2 = [P1, ..., PM ]. To find the coef-
ficients of our model, we use Ridge regression [19]. Unlike
linear regression, which estimates the model’s coefficients by
minimizing the residual sum of squares between the observed
targets in the data and the targets predicted by linear approxima-
tion, Ridge regression minimizes a penalized residual sum of
squares. We choose to use Ridge regression because, as men-
tioned in [19], when using multiple independent variables, and
if these variables are not perfectly uncorrelated, the residual sum
of squares method has a high probability of giving unsatisfac-
tory results. In our case, the aggregate power samples X1 and
the predicted states of each load Ŷ1 are more or less correlated

depending on the average consumption of each load. Because
switching a load ON/OFF translates into a high/low state which
increases/decreases the aggregate power.

C. Data

We used The REDD dataset [20]. This dataset is largely used by
NILM researchers, it contains sensor measurements collected
from 10 households. Also, it provides low frequency aggregate
measurements as well as ground truth measurements. We consid-
ered Household 1 which contains active power of ground truth
and aggregate data measured over a period of 8 days. We used
80% of the signal for training and 20% for testing. To compare
our results with [15], we targeted the same appliances which
are, fridge, oven, washing dryer, dishwasher, kitchen outlet, and
microwave.

IV. RESULTS AND DISCUSSION

The field of NILM lacks standard (or commonly adopted) met-
rics for the evaluation of the algorithms, making fair comparison
difficult [8]. To evaluate the results of our approach, we use the
F1-score (3) and the relative energy error (8). To compare our re-
sults with [15], we use the accuracy Acc (2) and the normalized
mean square error NRMSE (6).

Acc =
TP + TN

TP + FN + TN + FP
(2)

F1-score =
2× Pr ×R

Pr +R
(3)

Pr =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

The true positive parameter TP represents the number of sam-
ples that have been correctly classified or, more precisely, the
power quantity correctly assigned to that device. The false-
positive parameter FP represents the number of samples that
have been incorrectly classified or, more precisely, the power
quantity incorrectly assigned to that device. The false-negative
parameter FN represents the number of samples that should
be but have not been classified or, more precisely, the power
quantity that should have been assigned to that device but has
been assigned to another or has not been assigned at all. The pre-
cision parameter (Pr) measures the portion of power samples
that have been correctly classified among the power samples
assigned to a given device. The recall parameter (R) measures
what power portion of a given device is correctly classified in
general, also considering the samples that would belong to that
device but have been wrongly assigned to another or not as-
signed at all. Therefore, the accuracy Acc measures how well
each appliance is detected and the F1-score combines the results
obtained through the precision and recall analysis.

NRMSE =
RMSE

X1

(6)
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Table. I
PERFORMANCE RESULTS FOR EACH LOAD.

Load F1-score (%) Energy error (%)
Fridge 96.95 3.93
Oven 84.71 0.17
Dishwasher 77.38 3.24
Kitchen Outlet 85.62 0.39
Washing Dryer 78.34 1.26
Microwave 89.87 0.33

Table. II
OVERALL PERFORMANCE RESULTS OF THE PROPOSED NILM

METHOD.

Macro-F1 (%) Micro-F1 (%) Average Error (%)
85.48 91.88 1.55

RMSE =

√√√√√ N∑
i=1

(x̂1i − x1i)2

N
(7)

Energy-Errorj =
| Êj − Ej |

Ej
(8)

With Êj , the estimated energy consumption for the jth load and
Ej is the actual energy consumed by the load.

Table. I shows the evaluation results of our method. We ob-
tain the best classification performance for the fridge with an
F1-score = 96.95%. This is because the refrigerator has a less
complexe load signature in comparison to other loads. Also,
the refrigerator has the highest number of working cycles, thus,
allowing the classifier to learn to detect it in different loads
combinations scenarios. The worst classification performance
is obtained for the dishwasher with an F1-score = 77.38%. We
found that the "wash and drain" cycle of the dishwasher con-
sumes almost the same power as the refrigerator and, because
we only use the power as a feature, the classifier can’t discrimi-
nate between them. In this case, the classifier will often predict
the refrigerator as it is the most populated class compared to
the dishwasher. The proposed near real-time method can detect
loads that work simultaneously as shown in Fig. 3. We found in
our data thirty-nine different load combinations and up to four
loads working simultaneously.

Table. III
PERFORMANCE COMPARISON BETWEEN OUR METHOD AND

THE PALDI METHOD [15].

Load Accuracy (%)
Our method PALDi

Fridge 98.4 78.86
Oven 99.91 99.09
Dishwasher 98.57 77.12
Kitchen Outlet 96.72 98.32
Washing Dryer 99.63 99.53
Microwave 99.76 88.33
Total 98.83 90.21
NRMSE 0.65 2.96
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Fig. 3: Figure showing the disaggregation result obtained using
our method. The power signals of the fridge, kitchen outlet, and
microwave are disaggregated from the aggregate power signal.
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Fig. 4: Comparison between the estimated energy by our method
for each load, and the corresponding actual energy consumption.

Concerning the energy estimation performance, we found that,
in our case, good classification performance doesn’t always re-
sult in good power/energy estimation performance. For instance,
the refrigerator which is the most accurately classified load has
the highest energy estimation error as shown in Table. I. High
power spikes which occur when the refrigerator’s compressor
starts working can attain up to ten times its average power con-
sumption. These values are difficult to predict because they
don’t have consistent measurement values in the dataset due to
the low temporal resolution of the data. Fig. 4 shows a bar plot
of the estimated energy and the actual consumed energy. Table.
II gives the overall performance of the proposed method. Table
III shows the comparison of the results of our method with the
PALDi method [15]. We observe that the accuracy is higher for
all loads except for the kitchen outlet. We also obtained a lower
energy estimation error as measured with the NRMSE.

V. CONCLUSION

In this paper, we presented a near real-time load disaggregation
method based on multi-label classification and multi-output re-
gression. We used a multi-label classifier to predict the ON/OFF
state of each load from the aggregate active power signal and
a multi-output regression to estimate the power consumption
of each load. The obtained results showed that our method dis-
aggregates loads’ energy consumption with low relative energy
error. Using only the active power as a feature doesn’t allow
to differentiate between loads that consume the same power.
A compromise exists between NILM feedback frequency and
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disaggregation performance. Increasing NILM feedback fre-
quency translates into decreasing the amount of available data
for NILM prediction, thus, reducing the discriminative capabil-
ity of extracted features. Also, using high-frequency data may
be more adapted for the near real-time NILM problem but at the
expense of higher implementation costs.In the future, we will
work on the hardware implementation of our method and test it
on several households.
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