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Performance Evaluation of Multilayer Perceptron 
Neural Network and Adaptive Neuro-Fuzzy 
Inference Systems for Reservoir Operation 

Optimization: a Case Study of Cheffia Reservoir, 
Algeria 

Noureddine MEZENNER, Abdelmalek BERMAD, Tarik BENKACI, and Noureddine DECHEMI 

Abstract− Artificial Intelligence based prediction has wide applications, including hydrology, water resources 
management and particularly reservoir operation. Thus, two black box models based on Artificial Neural Networks and 
Fuzzy Logic methods are implemented and tested in forecasting reservoir operation; the first is a Multilayer Perceptron 
Neural Network and the second is an Adaptive Neuro-Fuzzy Inference System combining the two methods. The developed 
models consist of predicting evaporation, inflows and reservoir storage from their historical records and that, with aim  
of providing the best fit between predicted and observed values and of improving operating rules on storage and releases. 
The performance of achieved results demonstrated the pertinence of Artificial Neural Networks and fuzzy Logic methods 
in predicting cyclical state variables, such as evaporation and storage, while the prediction of inflows to reservoir 
generally gave better results compared to other research works available in open literature on one hand. On other hand, 
it is deduced from testing different prediction models that these methods are unable to predict random variables.  

Keywords− Modelling, Prediction, Reservoir, Inflow, Artificial Neural Networks, Fuzzy logic. 

 

NOMENCLATURE 

ANFIS        Adaptive Neuro-Fuzzy Inference System 
ANN           Artificial Neural Networks 
CANFIS     Co-Active Neurofuzzy Inference System 
CC             Correlation Coefficient 
DENFIS     Dynamic Evolving Neural-Fuzzy Inference 
System 
LR             Learning Rate 
MAE          Mean Average Error 
MCM         Million Cubic Meter 
MLPNN     Multilayer Perceptron Neural Network 
NC             Nash Coefficient 
NN             Neurons Number 
RMSE        Root Mean Square Error 
RN             Rules Number 

I. INTRODUCTION 

Water is a vital natural resource. Though it is renewable, it is 
quantitatively limited and its distribution is stochastic in a 
semiarid regions.  It can be stored in dam reservoirs during wet 
periods of precipitations for satisfying water demand during 
low water periods, that why reservoir releases regularization 
remains a difficult task in the conditions of uneven 
spatiotemporal distribution of rainfalls accentuated by the 

climate change. Reservoirs operation is subject to operating 
rules associated with plant objectives that impose a minimal or 
maximal bound on the total flow able to be released from 
reservoir. These operating rules are considered as function of 
inflows, reservoir storage and releases. 
Generally, operating inflows, as a state random variable, is a 
difficult task. Particularly when they are overexploited or 
underexploited for making decision about releases, whose 
estimation and allocation between users constitutes the 
objective of reservoir system exploitation and that, through 
taken options at the beginning of each decision period for 
satisfying as far as possible target objectives imposed to 
reservoir system. Depending on inflows, the reservoir releases 
are conditional on the storage and they are determined simply 
to satisfy water demand and to meet their target storage by 
insuring minimum flow requirements. Their systematic 
evaluation is subject to uncertainties. With aim of reducing the 
uncertainty and improving reservoir operation, different models 
exist for describing and analyzing the behavior of reservoir 
releases operation through the assessment of various scenarios.  
Several tools are used in matter of reservoir operation 
modelling; from dynamic programming to linear and nonlinear 
programming, to stochastic dynamic programming and to 
artificial intelligence with artificial neural networks (ANN) and 
fuzzy logics that emerged as viable tools for reservoir operation 
modelling and forecasting (Labadie, 2004) [1]. Likewise, 
multiple models based on fuzzy logics have been carried out in 
hydrology and water resources management. Recently, 
Panigraphi and Mujumdar (2000) [2] attempted to provide an 
implementable single purpose reservoir operation policy, using 
fuzzy logic methods. They found that the latter might remain 
limited to a single reservoir operation, because of the curse of 
dimensionality that is observed in a fuzzy rule based model. As 
the number of fuzzy sets increases, the dimensionality of the 
problem grows multiplicatively. What has been pointed out by 
Russell and Campbell (1996) [3] and it implies that the fuzzy 
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logic approach is not an alternative to the more conventional 
optimization techniques. 
Adaptive NeuroFuzzy Inference System (ANFIS) method, 
merging ANN and fuzzy logics, has been used for reservoir 
operation forecasting. For instance, Chang and Chang (2001) 
[4] combine Genetic Algorithms (GA) and ANFIS methods for 
determining the optimal real time reservoir release operation. 
Learning from the input-output patterns obtained from GA, 
they estimate the reservoir release in predefined conditions 
using ANFIS model. First, their work consists of using the 
subtractive fuzzy clustering to reduce the number of input rules; 
as the number of variables increases, the number of parameters 
of membership functions increases highly. As to the second 
problem, the objective function does not express the reservoir 
operation characteristics. Several optimal solutions have the 
same minimum value in the objective function of reservoir 
operation. From another  side, El Shafie and all (2006) [5] 
developed an  ANFIS model with a high accuracy in forecasting 
average inflow events of the Nile River at Aswan High Dam, 
especially for extreme events, given a high uncertainty in future 
inflows, making of developing optimal release policies of a 
multi-purpose reservoir a complex process. On the contrary, 
Chang and all (2014) [6]  explored the effectiveness of multiple 
sources of rainfall characterized by a complex temporal 
heterogeneity, and they found if the ANFIS model is fed with 
the assimilated precipitation, it provided reliable and precise 
rainfall forecasts and can be a great help on floods warnings. 
On the other hand, a neuronal model based on the radial 
function using inflows and releases as inputs for predicting 
water losses, might give better results, depending generally on 
the data size and the neural model parameters (Samad and all, 
2015) [7]. In the same field of reservoir operation modeling, 
Kisi and al (2017) [8] demonstrated the accuracy of the 
dynamic evolving neural-fuzzy inference system (DENFIS) in 
modeling pan evaporation compared with the classic ANFIS 
model. The latter differs from DENFIS new model by using an 
evolving clustering method, a triangular membership functions 
as fuzzy sets and an alternative weighting scheme for local 
learning of consequent parameters. Salih and all (2019) [9] 
applied ANFIS and Co-Active Neurofuzzy Inference System 
(CANFIS) models successfully in predicting monthly reservoir 
evaporation; a good accuracy is reached using only two inputs 
of air temperature and relative humidity. Alquraish and al 
(2021) [10] in predicting inflows to reservoir, succeeded in 
improving the forecasting performance of ANFIS model using 
an add-in optimization algorithm based Genetic Algorithms 
methods. In the present case of Cheffia reservoir, a performance 
evaluation of artificial neural networks and fuzzy logic methods 
is made in predicting evaporation, inflows and reservoir storage 
in order to define appropriate operating rules on releases. 

II. MATERIAL AND METHODS 

1.  Study Area  

Cheffia dam reservoir (Fig.1) is set up on Bounamoussa River, 
situated in the Northern East of Algeria. Watershed reservoir 
covers an area of 575 km2 and received an average monthly 
rainfall of  61 mm with a standard deviation of 70 mm. 
Reservoir is intended to satisfy agricultural needs in water 
through releases modulated from spring to autumn and 
reinforced in a summer for the irrigation, and likewise to supply 
the region in drinking water. Reservoir storage is 180,8 MCM. 
Observed data covers the period of forty years and are collected 
from the reservoir operating budget (1979-2019). Five 
variables are assumed as input state variables, namely reservoir 
storage, inflows to reservoir, evaporation and seepage, and one 
as an output decision variable, namely  releases. The maximum 
and the minimum of the reservoir storage are 202 MCM and 30 

MCM corresponding respectively to the forced storage volume 
and reservoir dead volume or ecological volume. By the 
monthly inter annual average, the water consumption and 
evaporation represent respectively and nearly 59% and 12% of 
the inflows. 
 
 
 
 

                                       
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Map of Cheffia Reservoir and its watershed 
 

The operating mass balance of Cheffia reservoir is derived from 
a continuity equation as: 
 
𝑆(𝑡 + 1) = 𝑆(𝑡) + 𝐼(𝑡) − 𝐸(𝑡) − 𝑊𝐶(𝑡) − 𝑆𝐸𝐸𝑃(𝑡) (MCM)(1) 
 
Where S(t+1) is storage at time step t+1 ; S(t) is storage at time 
step t ; I(t) is inflow at time step t ; E(t) is evaporation at time 
step t ; WC(t) is water consumption at time step t and SEEP(t) 
is water seepage.  
The permissible water storage is given as: 𝑆௠௜௡ ≤ 𝑆(𝑡) ≤ 𝑆௠௔௫  
Through the continuity equation of the operating mass balance, 
the natural processes such as inflows and evaporation are the 
preponderant inputs to the system; they are uncertain events 
estimated systematically. Furthermore, the releases are 
conditional on the storage that depends on the inflows 
characterized by the randomness.  

2. Architecture of MLPNN model 

The objective of prediction consist in  providing manager a 
decision making tool for a rational water management. Thus, 
the adopted MLPNN model is a conventional feedforward 
neural network with three layers   (Rumelhart and all, 1986) 
[11].  
The supervised learning is implemented iteratively; at each 
iteration, the synapses weights and the networks bias are 
modified using the gradient descent method, a criteria in 
minimizing the quadratic error is defined as the gap between 
the observed and the predicted activated functions, expressed 
as follows: 
 

                              𝐸 =
ଵ

ଶ
∑ (𝑦௜ − �́�௜)

ଶ௡
௜ୀଵ                                   (2) 

 
 Equation (2) is the reduced form of the mean squared error E 
or usual function minimized in least squares regression and 
where n is the patterns size, 𝑦௜  represents the observed activated 
function of output neuron i and  𝑦ො௜ is the predicted activation 
function of that neuron. Once a network converges to a solution, 
it is then able of classifying each unknown input pattern with 
other patterns that are close to it in terms of the same 
distinguishing features. From the mathematical point of view, 
MLPNN may be considered a multivariate nonlinear 
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nonparametric statistical method (White, 1989, Ripley, 1993) 
[12] [13]. A typical MLPNN with five hidden layers containing 
M neurons is based on the following equation: 
      
�́�௜ = 𝑓൫∑ 𝑤௜௝𝑥௜

௡
௜ୀଵ + 𝑒௝൯                                             (3)  

 
Where �́�௜  is the output value of the neuron, expressed as a 
function 𝑓  of the sum of the weighted inputs of the hidden 
neurone j and the relating bias. N is the total number of input 
neurones, 𝑤௜௝ is the weight from input neurone i to the hidden 
neurone j, 𝑥௜  

is a value of the ith pattern input and  𝑒௝ is the bias 
(or threshold) for neuron j.          

3. Architecture of ANFIS model 

An adaptive network, as its name implies, is a network structure 
consisting of nodes and directional links through which the 
nodes are connected. Moreover, parts or all nodes are adaptive, 
which means each output of these nodes depends on the 
parameters belonging to this node and the learning rule 
specifies how these parameters should be changed to minimize 
a prescribed systematic error. ANFIS is a multilayer feed-
forward network where each node performs a particular 
function on incoming signals. Both square and circle node 
symbols are used to represent different properties of adaptive 
learning. To perform desired input–output characteristics, 
adaptive learning parameters are updated based on gradient 
learning rules (Jang, 1993) [5]. For simplicity, we assume the 
fuzzy inference system under consideration has two inputs, x 
and y, and one output z.  
 
Suppose that the rule base involves two fuzzy if–then rules of 
Takagi and Sugeno’s type: 
 
𝑅𝑢𝑙𝑒1 = 𝐼𝑓 (𝑥 𝑖𝑠 𝐴ଵ) 𝑎𝑛𝑑 (𝑦 𝑖𝑠 𝐵ଵ) 𝑇ℎ𝑒𝑛 (𝑓ଵ = 𝑝ଵ𝑥 + 𝑞ଵ𝑦 + 𝑟ଵ)     (4) 
 
𝑅𝑢𝑙𝑒1 = 𝐼𝑓 (𝑥 𝑖𝑠 𝐴ଶ) 𝑎𝑛𝑑 (𝑦 𝑖𝑠 𝐵ଶ) 𝑇ℎ𝑒𝑛 (𝑓ଶ = 𝑝ଶ𝑥 + 𝑞ଶ𝑦 + 𝑟ଶ)    (5) 
 
Where x and y are inputs, Ai and Bi are the fuzzy sets, fi are the 
outputs within the fuzzy region specified by the fuzzy rule, pi, 
qi and ri are the design parameters that are determined during 
the training process. The ANFIS architecture to implement 
these two rules is shown in Fig.2, in which a circle indicates a 
fixed node, whereas a square indicates an adaptive node. 
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Fig.2: ANFIS Model 
 
Layer 1: this layer transmits data inputs to the fuzzification 
layer. 
 
Layer 2: Each node of this layer is a square node with a 
function expressed by: 
 

𝑂௜
ଶ = 𝜇஺೔

(𝑥)                                                                           (6) 
 
Where x is input to node i, and Ai is the linguistic state 
associated with its function, in others words, 𝑂௜

ଶ is the 
pertaining degree of x to Ai in Jang model; membership 
functions are Gaussian. 
 
Layer 3: Each node i in this layer is a circular node labelled  
that induces as outputs the product of its inputs; this product 
represents the activation degree of a rule expressed by: 
 
𝑂௜

ଶ = 𝑤௜ = 𝜇஺೔
(𝑥)𝜇஻೔

(𝑦)                                                     (7) 
 
In others words, each node of this layer corresponds to a Sugeno 
fuzzy rule; it receives neurons outputs of fuzzification and 
computes its activation. 
  
Layer 4: In this layer, the nodes are adaptive nodes. The output 
of each node in this layer is simply the product of the 
normalized activation degree of a rule i given by: 
 
𝑂௜

ଷ = 𝑤ഥ௜𝑓௜ = ቀ
௪೔

(௪భା௪మ)
ቁ                                                        (8) 

 
Layer 5: each node in this layer is a square node with a function 
given by: 
 
𝑂௜

ହ = 𝑤ഥ௜𝑓௜ = 𝑤ഥ௜(𝑝௜𝑥 + 𝑞௜𝑦 + 𝑟௜)                                        (9) 
 
Where 𝑤ഥ௜ is the output of Layer 3 and ({pi, qi, ri}), called 
consequent parameters, are the output parameters set of this 
node (Jang, 1993) [14]. Each neuron i of this layer is relied with 
a corresponding normalization neuron and to initial network 
inputs. 
 
Layer 6: the single node of this layer is a circular node that 
sums the node’s outputs in the previous layer to be the outputs 
of the whole network given by: 
 
   𝑂௜

଺ = ∑ 𝑤ഥ௜௜ୀଵ 𝑓௜                                                                 (10) 
 
The output of the ANFIS is calculated by employing the 
consequent parameters found in the forward pass. The output 
error is used to adapt the premise parameters using a standard 
backpropagation algorithm. It has been proven that this hybrid 
algorithm is highly efficient in training the ANFIS (Jang, 
1993)[14]. 

4. Performance Metrics For Models Calibration and 
Validation 

 
a. Correlation coefficient  

𝐶𝐶 =
ఙೣ೤

ఙೣ∗ఙ೤
                                                                    (11) 

 
Where 𝜎௫: is the standard deviation of the observed values ; 
 𝜎௬: is the standard deviation of the predicted values; 
 𝜎௫௬: is the standard deviation of the observed and predicted 
values. −1 ≤ 𝐶𝐶 ≤ 1 
 

b. Root Mean Square Error 

 








1

21

i
yixiRMSE

                                         

(12) 
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When RMSE converges to zero represents the perfect fit 
 

c. Mean Average Error 










1

1

i
yixiMAE

                                                       

(13) 

Others metrics are important for testing or validating the model, 
they’re as follows: 
 

d. Nash Coefficient(NC) 
It is expressed as follows:  

𝑁𝐶 = ൤1 −
∑ (௫೔ି௬ො೔)మ೙

೔

∑ (௫೔ି௬ത)మ೙
೔

൨ ∗ 100                                        (14) 

 
𝑥௜: Observed values;  
𝑦ො௜ : Predicted values;  
�̅� : Average of observed values. 
This metric is first used for deeming a model operating by 
episodes (Nash and al, O’Connel et. al, 1970) [15] [16]. It 
expresses the variance percentage of the measured series, 
explained by the model. 
 

e. The Biased Average 
The biased average is the difference between the averages of 
the observed and the predicted values (Legates and all, 1999) 
[17] given as follows:  
 
{𝐵} = 𝑦ത௜ − �̅�௜                                                                   (15) 
 
𝑦ത௜: Average of predicted values;  
�̅�௜ : Average of observed values.  
When {𝐵} converges to zero, the averages coincide. 
 

f. Variation index 
The validation of the used model may be completed by 
comparing the variation coefficients of the observed and the 
predicted values. 

𝐼 =
஼௩೤

஼௩ೣ
                                                                          (16) 

𝐶𝑣௬: Variation coefficient of the predicted values;  
𝐶𝑣௫: Variation coefficient of the observed values.  
If the variation index I is near to unity, the prediction is perfect.  

III. RESULTS DISCUSSION 

The reservoir operation efficiency depends on the decision 
making on releases through reservoir operating rules, 
developed from an accurate knowledge of preponderant state 
variables, such as evaporation, inflows to reservoir and 
storage, which they should be closely linked. For assessing the 
prediction model of these parameters, the period of the model 
testing or validation is three years (2015-2018). The adopted 
model is assessed according to neurons number, lag time, 
learning rate and validation. The prediction of state variables 
is expressed by the following equation: 

  
 

𝑋௧ = 𝑎଴ + 𝑎ଵ𝑋௧ିଵ + 𝑎ଵ𝑋௧ିଶ + 𝑎ଵ𝑋௧ିଷ + 𝑎ଵ𝑋௧ିସ + 𝑎ଵ𝑋௧ିହ + 𝑎ଵ𝑋௧ି଺        
(17) 

 
Where 

tX : predicted values at time t with a lag time of t-2, t-

4 and t-6. 
t : Time step (month), 610 ,..., aaa : Coefficients. 

The adopted neural model « MLPNN » has four options of the 
neurons number (NN) corresponding to five, ten, twenty and 
one hundred, respectively, the lag time is t-2, t-4 and t-6 and a 
learning rate (LR) is varying from 10% to 90%. As to ANFIS 
model; it includes three options corresponding to a rules 

number (RN = 2), a learning rate (LR= [10%: 90%]) and a lag 
time (t-2 ….t-6). 

1. Evaporation prediction 
 

Such as a cyclical preponderant variable acting on storage; its 
significance increases from a semiarid climate to arid.  In the 
case of Cheffia reservoir situated in the semiarid region, by a 
monthly inter annual average, it is 0,579 MMC representing 
12% of inflows to reservoir.  
 
The achieved predicted values are better given the remarkable 
performance metrics whether in a calibration or validation 
phase (Table.I); the best model MLPNN which gives the best 
predicted values is the third model (Model-3) with a neurons 
number, a learning rate and a lag time equal to 5, 90% and t-4, 
respectively. 
 
Thus, the model validation has given the best correlation 
between observed and predicted values of evaporation, whose 
CC, RMSE, MSE, NC,   biased average {B} and  variation 
index (I) are  0,990, 0,003, 0,001, 89%, 0,27 and 1, respectively. 
Fig.3, 4 and 5 show the best fit between observed and predicted 
evaporation values. 

 
Table I 

Performance metrics of the evaporation prediction using MLPNN 
model. (C: Calibration, V: Validation) 

 
 
 

M
od

el
 -

1 

  Lag 
time 

NN 
LR 
% 

CC RMSE MSE NC {B} I 

C t-2 5 50 0,815 0,016 0,011       

  t-2 10 50 0,805 0,021 0,026       

  t-2 10 50 0,740 0,020 0,019       

V t-2 5 50 0,926 0,012 0,021 83% 0,031 1,007 

  t-2 10 50 0,901 0,001 0,001 80% 0,027 0,988 

  t-2 10 50 0,943 0,003 0,002 88% 0,021 1,040 

M
od

el
 -

2 

C t-4 5 50 0,889 0,013 0,004       

  t-4 10 50 0,894 0,015 0,016       

  t-4 20 50 0,881 0,015 0,009       

V t-4 5 50 0,957 0,009 0,008 86% 0,013 0,922 

  t-4 10 50 0,940 0,003 0,002 84% 0,013 1,018 

  t-4 20 50 0,953 0,004 0,003 85% 0,005 0,933 

M
od

el
 -

3 

C t-4 5 90 0,944 0,013 0,026       

  t-4 10 90 0,944 0,014 0,014       

  t-4 20 90 0,927 0,015 0,009       

  t-4 100 90 0,844 0,021 0,012       

V t-4 5 90 0,990 0,003 0,001 89% 0,027 1,003 

  t-4 10 90 0,962 0,005 0,001 87% 0,013 0,948 

  t-4 20 90 0,940 0,042 0,004 83% 0,005 0,962 

  t-4 100 90 0,955 0,027 0,003 72% 0,010 0,940 

M
od

el
 -

4 

C t-6 5 90 0,914 0,013 0,026       

  t-6 10 90 0,895 0,014 0,014       

  t-6 20 90 0,889 0,015 0,009       

V t-6 5 90 0,932 0,003 0,001 89% 0,027 1,003 

  t-6 10 90 0,967 0,005 0,001 88% 0,013 0,948 

  t-6 20 90 0,932 0,042 0,004 86% 0,005 0,962 
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Fig.3 : Correlation of the observed and predicted evaporation  
 
 
 
 
 
 
 

 
                                                                                
 
 
 
 
 
 
 
 
 
 

Fig.4: Confrontation of the observed and predicted evaporation 
 

                                                                                                     
                                                                                    
 
 
 
 
 
 
 
 
 

 
Fig.5: Observed vs predicted evaporation 

 
As to ANFIS model, the best-adopted model involves a rules 
number (RN), a learning rate (LR) and a lag time of 2, 90%, 
and t-4, respectively. For assessing the predicted values of 
evaporation relative to observed ones, obtained performance 
metrics of CC, RMSE, MSE, NC, {B} and  I  corresponding to 
0,972; 0,004 ; 0,006 ; 93% ; 0,009 and 0,850, respectively. The 
achieved performance metrics are greatly promising, 
particularly a Nash coefficient (NC) of 93% higher than 89% 
resulted from MLPNN model (Table.II). Moreover, by 
comparing the achieved results, it is clear that both MLPNN 
and ANFIS models give better outputs. However, ANFIS 

model is more performing and accurate, as it is shown in the 
Fig.6, 7 and 8, where the predicted values of evaporation 
obtained using ANFIS model with two fuzzy rules are more 
performing than the predicted ones resulted from MLPNN 
model.  

Table II 
Performance metrics of the evaporation prediction using ANFIS 

model (C: Calibration, V: Validation) 
. 

M
od

el
-1

 

  Lag 
time 

NN/
RN 

LR
% 

CC 
RMS

E 
MSE NC {B} I 

C  2 2 50 0,826 0,016 0,016       

  2 2 90 0,843 0,019 0,031       

  4 2 90 0,816 0,021 0,003       

V  2 2 50 0,947 0,010 0,011 
89
% 

0,027 0,975 

  2 2 90 0,947 0,004 0,002 
88
% 

0,033 0,964 

  4 2 90 0,972 0,004 0,006 
93
% 

0,009 0,850 

 
 
                                                                                   
 
 
 
 
 
 
 
 
 
 
 

Fig.6: Correlation of the observed and predicted evaporation. 
 

                                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.7: Confrontation of the observed and predicted evaporation. 

 
 

                                                                                       
 
 
 
 
 
 
 
 

Fig.8: Observed vs predicted evaporation. 
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2. Inflows prediction 

Given the random character of inflows to reservoir, the 
developed model consists as far as possible, in exploring the 
performance of ANN methods in predicting random variables. 
In this case, the adopted multilayer neuronal model 
« MLPNN », whose  NN and LR are 20 and 90%, respectively, 
has given fair results (Table. III), as it is shown clearly in Fig.9, 
10 and 11, a slight difference between the observed and the 
predicted values with a RMSE lesser than unity in a calibration 
phase and lesser than two in a validation phase. Nevertheless, a 
weak correlation is observed. Likewise, ANFIS model gave 
acceptable predicted values and that, according to performance 
metrics (Table. IV) and as it is shown in Fig.12, 13 and 14. 
 

Table III 
Performance metrics of the inflows prediction using MLPNN model 

(C: Calibration, V: Validation) 

  
Lag 
time 

NN LR CC RMSE MSE NC {B} I 

C t-2 20 90 
-

0,745 
0,231 0,373       

  t-4 20 90 
-

0,920 
0,413 0,730       

  t-6 20 90 
-

0,316 
0,405 0,735       

V t-2 20 90 0,212 1,673 2,969 
-

50
% 

3,342 1,767 

  t-4 20 90 0,145 1,733 2,737 
-

65
% 

3,467 1,792 

  t-6 20 90 0,273 1,703 3,858 
-

34
% 

4,593 1,965 

 
Table IV 

Performance metrics of inflows prediction using ANFIS model   
(C: Calibration, V: Validation) 

  
Lag 
time 

NN LR CC RMSE MSE  NC  {B}  I 

C 2 2 50 0,244 0,923 0,177       

  2 2 90 -0,394 0,237 0,329       

  4 2 90 -0,326 0,357 0,527       

V 2 2 50 0,257 1,244 1,016 -53% 1,193 1,321 

  2 2 90 0,240 1,609 1,969 -49% 2,298 1,519 

  4 2 90 0,130 1,878 2,197 -48% 2,723 1,367 

 
 
 
 
                                                                             
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.9: Correlation of the observed and predicted inflows. 
 
 

 
 

                                                                                 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.10: Confrontation of the observed and predicted inflows. 
 

 

                         
 
 
 
 
 
 
 
 
 
 

 
Fig.11: Observed vs predicted Inflows. 

 
                                                                                      
 
 
 
 
 
 
 
 
 
 

 
Fig.12: Correlation of the observed and predicted inflows. 

 
                                        
 
 
 
 
 
 
 
 
 
 
 

Fig.13: Confrontation of the observed and predicted inflows. 
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 Fig.14: Observed vs predicted inflows. 

3. Reservoir storage Prediction 

Given the fair results obtained from inflows prediction, on the 
contrary, the prediction of a reservoir storage attempted with 
aim of verifying the performance of MLPNN and ANFIS 
models, is conclusive. Concerning MLPNN model, the second 
model with 5, 10 and 20 hidden neurons and learning rate of 
90% is promising in predicting the reservoir storage according 
to the achieved performance metrics (Table.V). Thus, the 
observed and the predicted reservoir storage values are highly 
correlated with a CC and NC about 0,963 and 93%, 
respectively. Fig.15, 16 and 17 confirm the robustness and the 
performance of MLPNN model in predicting reservoir storage.  
 

Table V 
Performance metrics of the storage prediction using  
the model  MLPNN (C: Calibration, V: Validation) 

M
od

el
 -

1 

  Lag 
time 

NN 
LR
% 

CC RMSE MSE NC {B} I 

C t-2 5 50 0,884 1,907 3,503       

  t-2 10 50 0,861 2,045 3,878       

  t-2 20 50 0,793 2,328 3,598       

V t-2 5 50 0,945 0,898 1,107 
89
% 

4,609 1,024 

  t-2 10 50 0,962 0,726 0,582 
93
% 

4,460 1,027 

  t-2 20 50 0,951 0,834 0,769 
91
% 

4,367 1,042 

M
od

el
 -

2 

C t-4 5 90 0,870 2,046 0,184       

  t-4 10 90 0,895 1,773 0,078       

  t-4 20 90 0,871 1,944 0,088       

V t-4 5 90 0,972 0,306 3,904 
94
% 

4,088 0,989 

  t-4 10 90 0,963 0,178 3,293 
93
% 

3,372 1,029 

  t-4 20 90 0,961 0,253 4,156 
92
% 

4,244 0,999 

M
od

el
 -

3 

C t-6 5 90 0,891 1,744 2,044       

  t-6 10 90 0,897 1,672 2,550       

  t-6 20 90 0,862 2,002 3,480       

V t-6 5 90 0,953 0,138 0,076 
92
% 

1,968 0,980 

  t-6 10 90 0,950 0,311 0,286 
91
% 

2,835 1,030 

  t-6 20 90 0,936 0,598 0,598 
88
% 

4,078 0,990 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig.15: Correlation of the observed and predicted storage. 
 

                                                                                     
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

Fig.16: Confrontation of the observed and predicted storage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.17: Observed vs predicted storage. 
 
As to ANFIS model, the second option of the first model with 
two fuzzy rules, a learning rate of 90% and a lag time of t-2 has 
reached performing metrics by comparing predicted and 
observed storage values (Table.VI). 
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The robustness and the accuracy of achieved predicted storage 
values is confirmed through their confrontation with the 
observed values as it’s shown in  Fig.18, 19 and 20. 
 

Table.VI 
Performance metrics of the storage prediction using 
 the model ANFIS (C: Calibration, V: Validation) 

 

M
od

el
-1

 

  Lag 
time 

NN/
RN 

LR 
% 

CC RMSE MSE NC {B} I 

C 2 2 50 0,865 1,862 2,457       

V 2 2 50 0,953 0,797 0,118 
79
% 

2,575 1,009 

C 2 2 90 0,873 2,032 3,701       

V 2 2 90 0,956 0,091 0,153 
81
% 

3,548 0,984 

C 4 2 50 0,746 2,718 2,887       

V 4 2 50 0,962 0,190 0,146 
70
% 

3,033 0,915 

 
 
                                                                               
 
 
 
 
                                                                 
 
 
 
 
 
 
 

Fig.18: Correlation of the observed and predicted  storage. 
 

 
                                                                                    
 
 
 
 
 
 
 
 
 
 
Fig.19: Confrontation of the observed and predicted storage. 
 
                                                                                  
 
 
 
 
 
 
 
 
 
 

Fig.20: Observed vs predicted reservoir storage. 

 

IV. CONCLUSION 

Our approach through this case study consists of predicting 
state variables such as evaporation, inflows and reservoir 
storage, with aim of reducing a systematical uncertainty.  This 
is necessary for optimizing the current reservoir operating 
policy, within the scope of a sustainable and secure water 
resources management, and therefore, the achieved models 
based artificial neural networks and fuzzy logic constitute, a 
decision making tool for a reservoir operator in order to manage 
releases efficiently.  In this respect, given the performance of 
ANN methods in extrapolating linear or nonlinear data, the 
developed MLPNN feed forward model based on the 
supervised learning is tested in predicting reservoir state 
variables. Generally, the performance of the MLPNN and 
ANFIS models is demonstrated through the promising reached 
results related to evaporation and reservoir storage prediction, 
given the performance metrics of correlation and Nash 
coefficients widely persuasive. As to inflows, their prediction 
gave fair outputs, which confirms the inability of conventional 
MLPNN and ANFIS methods in predicting the random 
variables. Moreover, I have to note that the developed models 
enabled in predicting inflows with a root mean square error 
lesser than unity. Nevertheless, the correlation between 
observed and predicted values is lesser than unity; this reached  
result is singular compared with the achieved results related to 
the random variable prediction based artificial neural networks 
and fuzzy logic,  available in the international literature on web.  
However, applying artificial neural networks and fuzzy logic 
helped in improving slightly reservoir-operating policy, in spite 
of predicting random variables remains a difficult task with 
these methods, whose classic solutions are not always 
completely satisfactory and are costly in computation time. In 
perspective, the future challenge in a matter of random variable 
prediction with artificial neural networks and fuzzy logic 
methods is to explore deeply their learning capacity, with aim 
of developing decision-making tools in a matter of reservoir 
operation and that, relative to the climate change, region aridity 
arid conditions of uneven rainfall distribution in space and in 
time.  
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