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Vibration Signal Parameter Estimation in Variable
Speed: Algorithms and performance bounds

Ali Abbadi, Cécile Capdessus, Karim Abed-Meraim, and Edgard Sekko

Abstract—Vibration signal parameter estimation for rotating machinery diagnostics operating under variable speed
conditions is considered. At first, we provide a brief survey of existing methods for Quadratic Phase Signal (QPS)
parameter estimation. Then, we introduce improved solutions for the general QPS case and the Order QPS (O-QPS)
case, respectively. For all considered cases (namely the QPS, O-QPS with tachometer and O-QPS without tachometer),
we develop the Cramer Rao Bounds to assess and compare the estimation performance limits for each model. Finally, we
compare the performance of all considered methods and highlight, in particular, the gain of the proposed solutions.
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I. INTRODUCTION

In the last decades, vibration signal analysis techniques have
attracted increasing attention and became a hot research topic in
the rotating machinery diagnostics area thanks to its potential
advantage over invasive diagnostics techniques.

It is based on the recording, via accelerometers or other mod-
ern technology sensors (e.g. high-speed laser sensors), of the
vibration levels and frequencies of the machinery of interest
and then using that signal to analyze how healthy the machine’s
components are. The vibration signal analysis is the realm of
developing appropriate models, methods and algorithms which
help determining the health of the machine and identify possible
impending problems like unbalance, misalignment, looseness,
lubrication issues, etc. Indeed, based on a physical model of
the vibration signal, and taking into account shocks, friction,
rotation speed, structural resonance and propagation, relevant in-
dicators can be elaborated to monitor rotating machinery. Such
a non invasive analysis has been shown to be very efficient to
detect problems such as [1,2]: Bearing failures, Imbalance,
Resonance and natural frequencies, Gearbox failures, Electrical
motor faults, etc.

Now, the introduction of artificial intelligence techniques for au-
tomating the diagnosis implies the development of appropriate
methods that can be implemented in all operating conditions,
even in the cases where classical approaches fail, such as in time
varying operating conditions. In that case, unlike the conven-
tional diagnostic approach based on stationary assumption, the
non stationary assumptions open a way to the diagnosis of the
rotating machinery under variable speed conditions.
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Based on time varying signal analysis tools for rotating machin-
ery diagnosis under variable speed operation, three classes of
order tracking have been proposed and broadly discussed in
the literature [3—6], which are the resampling based methods,
the Kalman filter based methods (tracking methods) and the
transform based methods. The resampling based methods trans-
form the signal data from the time domain to the angular (order)
domain to obtain a sampled signal at constant angular increment
instead of a sampled signal at constant time increment. They re-
sult in limited order resolution related to the constant increment
interval and a finite number of samples. In order to improve
the accuracy of order tracking the Kalman filter based methods
were introduced. They consist in recursively minimizing a cost
function for parameter estimation of time-varying frequencies to
overcome many of the limitations of order resolution and allow
the optimal estimation of the amplitude and phase of an order.
Unfortunately, they are computationally expensive and require
prior knowledge of some information such as the number of
orders (frequencies) to be extracted, needed for Kalman filter
initialization and convergence. These disadvantages limit the
use of these methods to experienced operators and in offline con-
ditions contrary to the robust and rather easy-to use transform
methods. The transform methods are based on the modification
of the DFT (Discrete Fourier Transform) kernel to a time vary-
ing kernel. They are both the easiest to use, and the simplest to
implement. These methods present some drawbacks related to
certain resolution limits and for some of them the need to add a
tachometer signal as reference regime.

In this paper, we will focus on this last class of methods where
the data can be analyzed and processed with many techniques,
which are briefly reviewed below. The basic principle of these
transforms is the replacement of the classical kernel of Fourier
transform by a kernel whose base functions have frequencies
that are proportional to the rotation speed of the system to be
monitored. A drawback of this modification is that the kernel
functions do not constitute any more an orthonormal basis. The
Speed Transform (ST), proposed by Capdessus et al. in [7,
8], is normalized with the integration interval, which ensures
asymptotic orthogonality in the case of linear speed variations.
To cope with a wider range of speed variations, the Time Variant
Discrete Fourier Transform (TVDFT), proposed by Blough et
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al. in [3,4,9], comprises an orthogonality compensation matrix.
But the most general technique is the Velocity Synchronous
Discrete Fourier Transform (VSDFT) proposed by Borghesani
et al. in [5, 6, 10], which consists in applying the time-variant
kernel Fourier transform to a corrected temporal signal. The
correction, which is a mere product of the raw signal by the
angular speed, ensures the orthogonality of the decomposition
whatever the speed variations.

In the case of transform based methods like ST [7], prior knowl-
edge of the rotation frequency variations is needed and this infor-
mation is provided by a tachometer™; hence only the order of the
signal harmonics has to be estimated. However, the tachometer
information is not always available, in which case techniques
that operate without such prior knowledge are required. Interest-
ingly, these time-varying kernel Fourier transforms are linked
with the Quadratic Phase Transform (QPT) in that they fit to
Polynomial Phase Signals (QPS). The QPS has been already
considered in many signal processing applications including
power systems [11], radar [12], and geophysics [13].

In this paper, we will extend the works in [14, 15]. Several meth-
ods for polynomial phase signal analysis already exist in the lit-
erature. We first provide an overview of the existing algorithms
for polynomial phase parameter estimation which includes the
time-frequency based methods in [16,17], the (higher order) am-
biguity function based methods in [18, 19], the iterative methods
in [20,21], and the fast decomposition methods in [22,23]. Note
that this survey is mainly limited to methods introduced in the
signal processing and communications community that deserve
to be better known and recognized as they provide interesting
extensions to the existing tools used in vibration signal analysis.

The proposed extended work consists of the previously men-
tioned survey of existing methods for QPS parameter estimation
followed by two new methods that lead to improved estimation
accuracy with reduced computational cost. Then, we derive the
CRB for the considered data models with or without a tachome-
ter information and provide a comparative performance analysis
via simulation experiments.

II. PROBLEM FORMULATION

Rotating machine with constant speed are characterized by har-
monic vibration signal of the form [9]
P
z(n) = Z A ed?™ v 4 (n) (1)
p=1

where P is the number of modes (harmonics), while A, and
fp are the complex amplitude and the frequency of the pth
mode. In this case, the signal is referred to as a linear phase
one (i.e. the component’s phase terms vary linearly with time
¢p(n) = 27 fyn). The additive noise w(n) is assumed to be of
zero-mean, white and gaussian distributed with variance o2

w*

In the case of variable speed, the signal phase would depend
non-linearly with time and the model becomes [7, 8]
P

z(n) = Z A,e?? (™) ap(n) (2)
p=1
* Recall that a tachometer is an instrument measuring the rotation

speed and provides prior knowledge of the instantaneous fundamental
frequency.
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¢p(n) being the phase term of the pth component.

A particular case of interest, widely considered in the literature,
is the one with uniform angular acceleration that corresponds to
multi-component chirp signal. This case may be encountered
in two different situations. First, on test benches where part
of the vibrations measurements are done during a run-up or
a coast-down of the machine. One can mention as an exam-
ple the run-up and run-down experiments performed on gears,
turbofans, or thermal motors, and other systems in order to
study their stability and their balance or determine their critical
speeds [24-28]. These techniques are now classically provided
in commercial test devices and are performed through a linearly
varying speed scenario. Second, in real-life operation, though
the speed variations generally cannot be assumed to be linear,
yet during the start-up and the coast-down stages, there usually
is a portion of the speed variations that can still be approximated
linearly [29]. In that context, the signal model is given by

P
z(n) = ZApej2ﬂ(fpn+vpn2) + w(n)

p=1

3)

As we can see, the study of this signal coincide with the well-
known polynomial phase signal analysis [22, 30].

In this paper, we focus only on the second order case (i.e.
Quadratic phase signal). Therefore, our first objective is to
study the parameter estimation problem for the signal model
in (3). More precisely, after a brief survey of the methods in
the literature, we propose to refine one of them (namely the
FQPT method in [22]) and to compare it to the other existing
techniques to assess its performance.

Our second objective, consists of considering a particular case
of QPT signals given by the model

P
a:(n) — ZApej%rop(fnJrrYnZ) T U)(Tl)
p=1

“4)

where o, is referred to as the pth harmonic order. Parameters
(f,~) might be known if a tachometer is available or unknown
otherwise. In the latter case, we have to assume that o; = 1
(corresponding to the fundamental frequency) and o, > 1 for
p > 2, otherwise the model is not uniquely identifiable*.

The model in (4) has been shown to well represent the vibration
signal in presence of ’faults’ or ’abnormal’ behavior of the
machine [7,9]. In this case, the harmonic parameters are used to
“control’ and diagnose the current status of the rotating machine.
For this particular model, we propose to adapt the HAF (Higher
order Ambiguity Function) method to extract the desired signal
parameters.

Finally, we propose to compare the two models in (3) and
(4) through the evaluation of their corresponding Cramer-Rao
Bounds.

*Indeed, the two sets of parameters {f,v,0p, p = 1,---, P}
and {o1 f,017,0p/01, p = 1,--- , P} lead to the same observation
z(n) and hence, without this normalization, one cannot identify our
parameters in a unique way.
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III. OVERVIEW OF MAJOR QPS PARAMETER ESTIMATION
ALGORITHMS

Polynomial phase signals have been used in many signal pro-
cessing applications to model different physical phenomena
characterized by nonlinear phases. We consider here the case
of quadratic phase signals corresponding to the second order
polynomial phase model given in (3). The signal being gaus-
sian distributed, the maximum likelihood (ML) estimation of
the QPS parameters coincides with the nonlinear least squares
problem

N-1 P
Hgn Z |m(n) — Z Apej27f(fpn+’ypn2)|2 (5)
n=0 p=1

where © is the vector of unknown QPS model parameters. This
optimization problem being highly nonlinear and complex, many
suboptimal solutions have been developed in the literature and
are briefly reviewed in this section.

A. Fast Quadratic Phase Transform (FQPT) method

The FQPT that was developed by Ikram et al. in [22], is based
on the quadratic phase transform (QPT) for joint phase parame-
ter estimation of multi-component chirp signals. The QPT is a
second order polynomial phase transform. It has the ability to
analyze chirp signals in the same way as Fourier transform ana-
lyzes sinusoidal signals. The Discrete QPT (DQPT) is defined
as

N-1
DQPT{x(n)} = X(k,1) = Z m(n)e‘ﬂﬂ(%”‘*‘ﬁ"z) ©)

n=0
where k =0,--- ,N—1and!=0,--- ,M — 1.

The FQPT is a fast implementation of the DQPT that transforms
the one-dimensional sequence x(n) into a two-dimensional se-
quence X (k, ). It proceeds to joint phase parameters estimation
after signal dechirping search. It uses some symmetry and trans-
lation characteristics to perform a fast transform and provide a
significant computational saving. The FQPT can be seen as an
approximate maximum likelihood method for large data sample.

Note that once the phase parameters are estimated from the
peaks location of the DQPT, the amplitude coefficients are ob-
tained by a simple least squares optimization according to

. @
2(N — 1)

where M# refers to the pseudo-inverse of matrix M which is
given by

1 1
ejQW(f1+’3'1) €j2ﬂ(fp+’vp)

ed2m(fLIN=1)+41(N-1)%) ed2m(fp(N=1)+7p(N-1)?)

Typically, M > N since the value of the second order coeffi-
cient is usually much smaller than the first order coefficient and hence
requires a finer grid search.
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B. Higher Order Ambiguity Function (HAF) method and its
variants

The conventional HAF method, first introduced by Peleg et al.
in [31] as the so called Discrete Polynomial Phase Transform
(DPT) and named later HAF by Porat in [32], is a recursive
algorithm that finds the highest-order phase coefficient, removes
its contribution from the signal and repeats the process until all
required phase parameters have been estimated. For a monocom-
ponent QPS, z(n) = Aed2*(/n+7m*) the basic HAF is defined
as follows

QPT[z(n), 7] = z(n+ 7)z(n — 7)* = |A|2eI?2/Tei2mrTn

®)
HAF(w) = DTFT{QPT[x(n),T]}
N-1 4
= ) QPTz(n),7le 7" )
n=0
The highest order + is estimated as
. 1
4 = ——argmax |HAF(w)] (10)
8rm w

Once the highest order ¥ is estimated, we proceed to the sup-
pression of its contribution by demodulation as

z(n) = a:(n)ej(*%%% ~ Ael?min (11)
The lowest order f is estimated as
p 1
f= o, 4rgmax |DTFT{z(n)}| (12)
T w

For the multi-component case, the transform in (8) would pro-
vide P sinusoids (plus non desired cross terms) that can be
estimated using DTFT or high resolution methods like MUSIC
or ESPRIT [20]. The dechirping in (11) is then achieved suc-
cessively for 41, --- ,4p for the estimation of the first order
parameters f,, p=1,---,P.

Unfortunately, HAF-based methods are characterized by the
use of matched filter that suffer from an identifiability problem
when dealing with multiple component QPS’s having the same
highest order phase coefficients.

To overcome this problem a so called product higher-order am-
biguity function (PHAF) was developed, by Barbarossa et al.
in [18]. The PHAF algorithm combines HAF and HIM (High
order Instantaneous Moment) techniques for the detection and
parameter estimation of multi-component QPS impinged in
white Gaussian noise. It is defined as the product of L HAFs for
L sets of lag parameters, and formulated as follows

L
PHAF(w) = | [ HAFY (w) (13)
=1

where HAFY (w) = SN 1 QPT[z(n), T(l)]e_j“F(l)”, 7O
refers to the [th lag term, and (V) = % is a frequency scaling
factor. The highest order v is estimated as

1
———argmax |PHAF(w)|
w

(M (14

’S/:
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The use of the PHAF offers a number of advantages over the
HAF. It solves the identifiability problem, improves noise rejec-
tion capabilities, and leads to improved performance as com-
pared to HAF method.

Another improved version introduced in the literature by Ikram
et al. in [20,21], is the iterative HAF method.

It is based on iterative calculation of the polynomial phase signal
coefficients. First, the second-order phase parameter is itera-
tively estimated and updated using a quadratic transform with
appropriate lag parameter in each iteration in order to improve
the estimation accuracy. Then the first-order phase parameter
is estimated based on the same transform technique of demodu-
lated signal, as defined below

7]V — Tg—1 — 1
(15)
where z,_1(n) is the demodulated signal defined as z,_1(n) =

2q(n) = zg-1(n +7g11)2g_1(n), n=0,--

x(n)e’j%—1"2, n =0,---, N — 1 with ¢ is the iteration index
and zo(n) = z(n).

Each estimated phase parameter is then refined using MUSIC
or other high resolution algorithms. It is shown in [20], that the
iterative HAF leads to a significant performance gain, especially
at low SNRs.

Remark: A main advantage of HAF-type methods is their
ability to deal with polynomial phase signals of any order
(see [23,30-32] for details).

Therefore, in the case of non-linear variable speed with non-
uniform angular acceleration, one can use polynomial phase
models of order higher than two and estimate their parameters
via the considered HAF-type methods. Note that any continuous
function over a finite interval can be *well approximated’ by a
polynomial function as shown in [33]. However, the estimation
cost of the phase parameters increases significantly with the
polynomial order and hence using a second order polynomial
represents a good trade-off in many practical situations [24, 25,
27].

C. Time-Frequency Distribution (TFD) based method

This algorithm was developed, by Barkat et al. in [16, 17], to
select and extract separately all components of frequency modu-
lated signal. It’s based on joint time-frequency analysis of the
signal. Firstly, a one dimensional signal is transformed to Time-
Frequency (TF) domain using appropriate reduced interference
TF kernel (in [16, 17], the B-distribution was used).

Then, the undesired low energy peaks are removed by noise
thresholding. After that, the number of components is esti-
mated as the number of peaks of the TFD slice by means of the
maximum argument of the histogram of the number of peaks
computed for each time instant. Finally, a components separa-
tion procedure is applied to extract separately all the components
by finding the components frequencies as the peaks positions of
the TFD slice and identifying the crossing components using a
smallest distance criterion.

This algorithm proved its superiority over the HAF method for
the estimation of a multi-component signal.
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The algorithm does not use any prior information about the
various components to be extracted and its performance de-
pends on the ability to suppress the cross-terms and needs high
time-frequency resolution. Unfortunately, the algorithm needs a
distribution that can reveal the features of the signal as clearly as
possible to have a clean TFD, and has expensive computational
load due to TFD computation and 2D search.

Note that, chirp signals are represented by ’straight lines’ in the
TF domain. Hence the problem of chirp parameter estimation
has been assimilated to a contour (straight lines) extraction
problem in an image and dedicated image processing tools have
been used in [34] for solving this particular estimation problem.
Other works related to the use of TF signal analysis tools for
vibration signals can be found in [35,36].

IV. PROPOSED ALGORITHMS

We introduce in this section an improved version of the FQPT
referred to as the Refined FQPT (R-FQPT) as well as adapted
versions of the HAF method to deal with the ’order’ estimation
problem related to the model in (4).

A. R-FQPT Algorithm

The FQPT, developed by Ikram and al. in [22], is described by
N—1 ,
- k L
QPT{x(n)} = X(k,1) = Y _ x(n)e "~ (16)
n=0

where N is the number of samples and M > N 2. The fast
computation of the FQPT is based on three properties (see [22]
for more details)

e Decomposition of the QPT in multiple DFT:

2D(n) = a(n)e 27w’ (17)

X(k,1) = DFT, (2" (n)) (18)

e Decimation : used by Fast Fourier transform FFT to com-
pute with reduced computational cost the Discrete Fourier
Transform (DFT):

DFT,, (20 (2"m + s)) = DFT,, (227 m + 5))
+ e 2 &2 DFT,, (202 m+ s+ 27))  (19)

e Symmetry:

DFT,(?" 50 (2"m +s)) = DFTp(zV(2"m +s))

. 2
e (5ET)

By using the previous properties, it is shown in [22] that the
computational cost can be reduced from O(N2M) to O(N M)
flops. This cost is still relatively high and increases with the
2D grid size N and M. Therefore to preserve ’a moderate’
numerical complexity, one should limit the number of grid points
which unfortunately affects the estimation precision of the FQPT.
To overcome this drawback, we propose in the following a new

(20)
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version of FQPT that refines the parameter estimation through a
two-step procedure.

For that, we will use a modified filtering/unwrapping algorithm
to refine the initial parameter estimate ( f (0),4(0)) given by the
FQPT algorithm. First, we demodulate the received quadratic
polynomial phase signal using the initial FQPT estimated pa-
rameters according to y(n) = z(n)e=327(Fn+3"n?) Thep
we apply a low-pass filtering to enhance the SNR. After that, we
create a vector v = [v(0),v(1), - ,v(Q — 1)]T of unwrapped
phase which is modeled as a new polynomial phase signal (i.e.
v(k) = ¢ + 6 f(kws) + 6y(kws)?) in noise with Q = -, w,
being a down-sampling factor used to reduce the cost and im-
prove the resolution of the method (this is needed here since the
residual parameters d f and d-y are close to zero). Then, we apply
a standard least squares estimation to obtain the new unknown
phase parameters vector, defined as v = [p, w6 f, w2677,
according to

argminy Y5y [v(k) — ¢ + 6 f(kwy) + 67(kw,)?|?

1 0 0 T 0(0)
1 1 1 o(1

i : : : @n
1 @Q-1) @-12] [w@-1

where # refers to the matrix pseudo-inverse,

Finally, we obtain refined phase parameters by accumulat-
ing each FQPT initial estimated phase parameters with cor-
responding estimated phase parameters deviations according to
F=7O+6fand5 =40 +63.

B. Adapted HAF methods for order QPS

For the case of O-QPS model of (4), the two steps of the HAF
method are not needed (since, for each signal component, we
have only one parameter to estimate instead of two for the
general QPS model). Therefore, if a tachometer is available, the
HAF method consists of only one step according to:

e For a given lag time 7, compute signal

P
y(n) =z(n+71)z(n)" = Z | A, |27 (T) gdmTvopm
p=1
+ cross terms + noise

with ¢,(7) = 2mo,(fT + y72). Since the orders o, are
typically in the range [1, 10], a proper choice for time lag
T corresponds to 27|y| ~ 0.1 so that the frequency terms
|[4m7T7y0,| are maximally separated while not exceeding the
upper limit 27 to avoid estimation ambiguity problems.

e Apply ESPRIT algorithm to signal y(n) for the high reso-
lution estimation of the P pulsation terms w, ~ 4770,
or equivalently

Op = Wp/(4mT7)

e Eventually, apply the iterative procedure of [37] for the
refining of the previous parameter estimate.
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If the tachometer is not available, parameter -y can be estimated
by using the fact that 0; = 1 so that the first (smallest) pulsation
value would correspond to 7, i.e.

¥ = /(4nT).

Once y obtained, parameter f can be estimated via (12) with
z(n) = z(n)e—927in"

V. CRAMER-RAO BOUNDS DERIVATION

We provide here the detailed derivation of the CRB for the
statistical models given in section II. Recall that, for a given data
model depending on an unknown parameter vector, the CRB
provides the lower limit to the statistical error variance for the
unbiased estimation of the unknown model parameters.

The CRB is computed as the inverse of the Fisher Information
Matrix (FIM) which entries are given by

9”In(p(x; ©))

[FIM];; = —E] 6,00,

] (22)

where E[.] represents the statistical expectation operator, p(x; O)
denotes the likelihood function, x is the observation vector and
O denotes the parameter vector to be estimated.

The error covariance matrix of any unbiased estimator f of
parameter vector £ = g(©) (denoted Cov(€)), where g(©) is
a locally differentiable function, is lower bounded by the CRB
according to (i.e. Cov(€) — CRB(£) is a positive semi-definite
matrix)

Cov(§) > CRB(¢) = vg(©)CRB(©)(vg(®)"  (23)

where CRB(0©) = [FIM]~! and s7g(0) is the gradient matrix

which (i, j)" element is defined by 8957(;@). In particular, this
J
means that the error variance in the estimation of parameters

gi(©) is greater than the ¢ — th diagonal element of CRB(¢).

Our case of interest corresponds to the Gaussian CRB for which
the FIM matrix can be expressed by the Slepian-Bang formula
[32]

Os™ Os

92 In(p(x; ©)) 2 Os™ Os
06; 00;

[FIM];; = —E] 20,00, | =

Re{ 1} (24)

72
where s denotes the noiseless QPS signal in (3) and Re].] refers
to the real part of a complex number. Note that in (24), we do
not include the unknown parameter o2, in the parameter vector
O since the FIM of the desired QPS parameters is decoupled
from the noise variance [32].

In the sequel, we provide the FIM expressions for the three
parametric models given in section II.

(a) General QPS case: The observed signal model is given by

P

. ) 2

s(n) = E ppe“/’peQ"Tl(fp"JFVp" )
p=1

(25)

where the complex amplitudes are written as A, = p,e’».
In that case, the unknown parameter vector of size 4P x 1
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is given by © = [{p,}, {p}. {fp}, {7p}]" and the FIM
is expressed as

FIM = U%Re{SHS} (26)
where the N x (4P) matrix S is given by
S Os 0s Os Os
S={s—riz—t{g7h{g 27
e o (g b A

(b) Order QPS case without tachometer: In that case, the
observed signal model is given by
P 2
S(TL) = Z ppeupp 627”013(fn+"/n ) (28)
p=1

with oy = 1. For this model, we have © =
Hppt: {ep},{optp>1, f,7] and the FIM is as in (26) with

s

§= [{fjp},{;jp}, (ot os

of

},{g;;}] 29)

For parameters f, = o,f = ¢,(0), and v, = 0,y =
hy(©) the minimum error variances are computed as

CRB(f,) = v9,(©)CRB(©)(vg,(0))"  (30)

CRB(3,) = Vhy(O)CRB(O)(Vh,(€))"  (31)

(c) Order QPS case with tachometer: The observed sig-
nal model is like in (28) but with parameters f and
~v known. In that case, the unknown parameter vec-

tor becomes © = [{pp},{pp} {0p}] and the matrix
S= {2} {2} {2

VI. PERFORMANCE ANALYSIS AND COMPARATIVE RESULTS

In this section, numerical investigations are conducted for the
following objectives:

o For the general QPS case, we provide a comparative per-
formance analysis of the different methods considered in
the survey part. All results are compared to the CRB to
assess their statistical efficiency.

e The previous comparative study is used to highlight the
performance gain of the proposed R-FQPT method in the
moderate and low SNR region.

e We compare the CRBs for the general QPS, O-QPS with
tachometer, and O-QPS without tachometer cases. In par-
ticular, this comparison allows us to evaluate the potential
performance gain brought by the tachometer use.

e We assess the performance of the proposed HAF method
adapted to the O-QPS case and compare it to the corre-
sponding CRB.
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e Finally, the R-FQPT is compared to ST and VSDFT on a
simulated vibration signal.

We assume that the observed vibration signal is a multi-
component QPS in additive white Gaussian noise. The additive
noise is randomly generated as circular complex white Gaussian
process with zero mean and unknown variance o2 The signal
to noise ratio (SNR) is defined as

1
SNR = 10[091072 (32)
O—’UJ

As performance measures, we use the averaged mean squared
error (MSE) defined as

MSE(6,) = (33)

where é](f) is the estimate of the p-th vibration signal parameter
0, at the i-th run. The numerical values are obtained over
Mec = 100 independent Monte Carlo trials where the SNR
varies between —20 and 20dB in all examples.

In the first example, we evaluate the performance of the pro-
posed R-FQPT for the general QPS case. For that, we present
a comparative study between the R-FQPT and the previously
reviewed methods in section III. The simulated environment con-
siders a single component and multiple component vibration sig-
nal with speed variation functions defined, in reduced frequency,
as f1(t) = (0.02+229225¢) and fo(t) = (0.045+229075¢) and
the complex amplitudes are A; = 1e/™/10 and Ay = 1eI7/5,
The signal is defined as

P
2(t) ~ ZApejQﬂ Jo fo(u)du

p=1

with P = 1 for single component and P = 2 for multiple
components case. The signal duration is about 256 samples.

The accuracy of the proposed R-FQPT algorithm is compared to
the HAF method introduced by Barbarossa et al. in [18, 19], the
iterative HAF method developed by Ikram et al. in [20], and the
TFD method proposed by Barkat et al. in [16] as well as with
the CRB given in section V.

It can be seen in figure 1 that, the R-FQPT algorithm outper-
forms the HAF, the iterative HAF, and the TFD one for both
single and multi-component signal cases, especially for low
SNR. In the asymptotic region (higher SNR) the difference is
very small but the proposed algorithm remains slightly better.

In the second example, we present a comparative study of
the CRB expressions derived for general and order QPS
cases. For that, we consider the signal models presented
in 3 and 4, where the parameters are N = 256, P = 3,
p = [1,1,1], ¢ = [r/10,7/5,7/2.5], f = [0.1,0.2,0.3],
~v = [0.001,0.002,0.003] and 0 = [1,2,3]. From figure 2,
it can be seen that there is almost no gain for the estimation of
the amplitude parameters when considering the model in Eq.
(4) instead of (3). However, for the estimation of the quadratic
phase parameters, a gain of about 3dB is observed when con-
sidering the additional information given by the O-QPS model.
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w-l‘]

5 E
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Fig. 1: MSE of f and ~ versus SNR for a single component
signal (top plots) and a two components signal (bottom plots).

Now, if a tachometer is used, the previous gain becomes much
larger and exceeds 10 dB for the considered example. Conse-
quently, when possible, the use of a tachometer for the vibration
signal analysis is highly recommended.

In the third scenario, we evaluate the performance of the pro-
posed Adapted-HAF method for the order QPS case with
tachometer. The performance of the proposed method is com-
pared to the corresponding derived CRBs in section V. For that,
We consider the simulated multi-component signal of example 2.
In figure 3, we compare the cumulated MSE of the 3 estimated
orders with their corresponding CRB. As we can see, the MSE
performance of the proposed adapted-HAF algorithm reaches
the CRB for moderate SNR values (for SN R > 0dB in the two
components case and SN R > 5dB for the three components
case). Hence the Adapted-HAF presents a low cost alternative
solution when the tachometer is available.

In the final experiment, we will apply the proposed methods to a
time varying vibration of a Diesel engine. Results are compared
to those of, Speed Transform (ST) proposed by Capdessus at al.
in [7] and Velocity Synchronous-DFT developed by Borghesani
et al. in [6].

R-FQPT is first compared to ST and VSDFT through a simu-
lated scenario that considers a three component vibration signal
with speed variation function defined, in reduced frequency, as
fr(t) = (0.16 + 0.00003t) given by tachometer. The signal is
defined as

3
. t . 0.00003 ;2
.T(t) ~ § ApeJQﬂ'op fO fr(u)du ~ § Apej2wop(0.16t+ 322 t%)

p=1 p=1

SNRindB SNRindB

Fig. 2: CRB comparison

where A1 = Ay = A3 = 1,01 = 2,00 = 4 and 03 = 6. The
signal comprises 512 samples.

It can be seen in figure 4 that the proposed approach allows esti-
mating jointly the polynomial coefficient parameters of the rota-
tion speed, that corresponds well to the considered harmonic’s
orders. Indeed, three corresponding peaks are located on a
straight line whose direction vector corresponds to the reduced
rotation frequency variations and the positions of the peaks al-
low estimating the corresponding order. R-FQPT thus allows
estimating directly the parameters of the three chirp components
whereas the ST and VSDFT give the order of the harmonic
relatively to a known rotation speed.

VII. CONCLUSION

The paper introduced a thorough analysis of the parameter es-
timation problem associated to variable speed vibration signal.
The latter is shown to be a quadratic phase signal for which a
plethora of estimation algorithms exist in the literature.

After a brief survey of the major class of methods, we proposed
two new solutions, namely the R-FQPT for the general QPS
case and the Adapted HAF for the O-QPS.

Simulation experiments have been conducted to illustrate the
behavior and advantages of the proposed solutions and compare
their performance to those of the major algorithms from the
literature. We have also derived the CRB expressions for the
different quadratic phase models and exploited them to investi-
gate the potential gain due to the side information related to the
Order QPS model and to the tachometer use, respectively.

As a perspective, we believe it would be highly beneficial to
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Fig. 3: MSE of the estimated order versus SNR for a two com-
ponents signal (top plots) and a three components signal (bottom
plots)

consider in future works an extension of our paper dedicated to
an enlarged comparative study of all methods (QPT, HAF, ST,
TVDFT, VSDFT) that can be used for the considered vibration
signal analysis. In addition, an enriched validation and testing
of these methods, based on real data measurements, would be
of high importance for their practical use.
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