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Numerical simulation of natural convection heat 
transfer in a cavity with finned surface under 

linear temperature profile 

Mohamed Tarek ATTOUCHI, Salah LARBI, and Sofiane KHELLADI 

Abstract− This paper is dedicated to a numerical study of natural convection through a cavity with finned surface where 
its base temperature is variable with linear profile. An approach based on modelling of internal fluid flow around a finned 
surface in laminar and at steady state conditions is used. Thermal and hydrodynamic aspects of the fluid flow were 
analyzed through the numerical resolution of equations of fluid dynamics. For this purpose, we have developed a 
computer code (in Fortran 90) based on the finite volume method. The studied model consists of a rectangular cavity 
where vertical walls are thermally insulated, the horizontal ones are maintained at different temperatures: cold and 
constant temperature on the upper wall and hot temperature with linear profile on the lower wall. The Rayleigh number 
used is in the range of 103 to 106 and the Prandtl number is fixed at 0.71. The plotted results are related to temperature 
distribution, streamlines, velocity fields as well as the mean Nusselt number. 
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NOMENCLATURE 

𝑎௉, 𝑎ா
, 𝑎ௐ,𝑎ே and  𝑎ௌ    Coefficients associated with variable 𝜙 

CP   Specific heat at constant pressure, [J/kg.°C]  
d      Spacing between fins, [m] 
g      Acceleration due to gravity; [m/s2] 
𝐺௞     Term of generation of the turbulent kinetic energy due to 

the gradient of the mean velocity with:𝐺௞ =  −ට
ଵ

௉௥ோ௔

ఓ೟

ఙ೅
𝑔𝛽

డ்

డ௬
 

Gr    Grashof number 
H      Cavity height, [m] 
K      Thermal conductivity, [W/m.K] 
k       Turbulent kinetic energy 
L       Cavity length, [m];   l :fin width, [m] 
NuL    Local Nusselt number ,NuM :Average Nusselt number 
P       Pressure [Pa] 
Pr     Prandtl number;𝑃𝑟 =

ఔ

ఈ
 

T       Local fluid temperature, [°C] 
𝛼      Thermal diffusivity, [m2/s] 
𝛽      Coefficient of thermal expansion 
𝜎௞; 𝜎் Turbulent Prandtl number for kinetic and turbulent 
energy respectively 
∅   General dependent variable (e.g. temperature, speed, ect.) 
𝜀      Energy dissipation rate 
𝜌      Volumic mass, [Kg/m3] 
𝜈      Fluid kinematic viscosity [m2/s]  

µ      Fluid dynamic viscosity [kg/(m.s)] 
𝜇௧    Turbulent viscosity 
𝜓     Streamlines [m2/s]  
c      Cold  
h      Hot 

I. INTRODUCTION 

Heat transfer by natural convection, in enclosures with finned 
surfaces and under differential heating conditions, is of primary 
importance in many engineering applications. It is encountered 
in various fields of industrial applications, such as the cooling 
devices of electronic instruments, the operation of safety of 
nuclear reactors, the solar collectors, the boilers, the fire 
fighting, the energy storage systems, the radioactive waste 
storage, the energy efficiency of buildings. Many researchers 
have conducted the studies related to the various aspects of this 
problem theoretically and experimentally. In the following, we 
present a bibliographical study allowing us to make a synthesis 
of research work based essentially on cavities with finned 
surfaces and subjected to different boundary conditions.  

W. S. Fu and W. J. Shieh [1] carried out a theoretical study of 
natural convection in a square enclosure partitioned by a single 
adiabatic fin attached to the ceiling wall. The Rayleigh numbers 
considered are 104 and 105. The results showed that the heat 
transfer coefficients were influenced by the height and the 
location of the fin.  

M. H. Novak and E. S. Nowak [2] used the CAV computer code 
for a 2D numerical analysis of natural convective laminar heat 
transfer and fluid flow distribution in rectangular and square 
thin-windowed cavities with or without inner fins. 
Recommendations on window design were made. The 
numerical analysis carried out by I. Dagtekin and H.F. Oztop 
[3], was based on the study of heat transfer by natural 
convection and the flow of the fluid in an enclosure equipped 
with two heated fins. The right and lower sidewalls were 
perfectly insulated, while the left and upper ones were kept at 
the same uniform temperature. The fins were placed at the 
bottom of the enclosure with higher temperatures than that of 
the uninsulated walls. The effects of the position and the height 
of the fins on the heat transfer and the flow field as well as the 
average Nusselt number were studied.  

ENP Ecole Nationale Polytechnique. 
ENTR Entropy (Shannon entropy). 
DWT Discrete Wavelet Transform. 
HV High Voltage. 
STD Standard Deviation. 
THD Total Harmonic Distortion. 
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N. Yucel and A. H. Ozdem [4] numerically studied fluid flow 
and heat transfer in partially divided square enclosures, the 
horizontal end walls of the enclosure were chosen adiabatic and 
the left and right side walls were maintained at uniform, but 
different temperatures and were subjected to appropriate 
boundary conditions and a Rayleigh number range of 103 to 
5.105. It has been observed that, the average Nusselt number 
increases with increasing Rayleigh number and decreases with 
increasing number of partitions, however, the decrease in 
average Nusselt number is apparent at low Rayleigh numbers. 
Note that the increase in the height of the partition induces a 
decrease in the average Nusselt number. 

E. Bilgen [5] carried out a numerical study on differentially 
heated square cavities. The horizontal walls are adiabatic while 
the vertical ones are isothermal. A thin fin is attached to the 
active wall. It was found that the Nusselt number increases with 
increasing Rayleigh number and decreases with increasing fin 
length. However, there is an optimum fin position, often at or 
near the center of the cavity, to minimize heat transfer by 
natural convection. 

A. F. Fahaid [06] has numerically studied laminar natural 
convection in vertical enclosures fitted with conductive fins 
attached to the hot vertical wall. The side vertical walls were 
kept at constant but different temperatures, while the horizontal 
wall and the bottom wall were kept adiabatically. It has been 
observed that the rate of heat transfer through an enclosure is 
largely affected and therefore it can be controlled by the number 
of fins attached to the vertical sidewall of the enclosure, as well 
as the fin lengths. 

A. Ben-Nakhi and A.J. Chamkha [7] have numerically 
examined natural convection in steady and laminar regimes in 
a square enclosure with a thin inclined fin of arbitrary length 
and perfectly conducting. The fin is attached to the hot vertical 
left wall, while the other three cold walls are thick, of the same 
thickness, and of arbitrary thermal conductivity. The results 
showed the effects of the angle of inclination of the thin fin on 
the length and the thermal conductivity of the surfaces 
concerned. 

A. Al Amiri and K. Khanafer [8] presented a study, which deals 
with the buoyancy induced by the heat transfer in a partially 
divided square enclosure. The Rayleigh number is taken in the 
range: 104 ≤ Ra≤107. The results revealed that all parameters 
related to the geometric dimensions of the heating element 
significantly affect the flow field, isotherms and heat transfer. 
The study revealed that increasing the heat exchange surface of 
the heating element, increasing its height, width and location 
improved heat transfer. 

A.F. Costa [9] has numerically studied natural convection in a 
square, partitioned, air-filled enclosure. Two fins of finite 
thickness are placed in the enclosure, whose position, length 
and thermal conductivity vary both as a function of the 
Rayleigh number and as a function of the boundary conditions. 
The overall thermal performance of the enclosure was analyzed 
through the Nusselt number. 

F. Selimefendigil and H. F. Öztop [10] conducted a numerical 
study on the heat transfer from a square cavity in the presence 
of an adiabatic and tilted thin fin. The upper and lower walls of 
the cavity were maintained at a constant temperature, while the 
vertical ones are assumed adiabatic. The average Nusselt 
number was determined as a function of the height of the fin, 
its angle of inclination and the Richardson number. 

C. Benseghir and S.Rahal [11] carried out a numerical study of 

transient laminar natural convection in a square cavity 
differentially heated and filled with air. Thin rectangular fins 
made with a high conductivity material were placed on the hot 
wall of the cavity. A single value of Rayleigh Ra=105 was 
considered. This study highlights the existence of an optimal 
length of the fins allowing the maximization of the natural 
convection on the cold wall. 

S. G. Martyusheva, M. A. Sheremeta [12] performed a two-
dimensional numerical analysis of the combined heat transfer 
(transient natural convection, thermal radiation and conductive 
surface). The enclosure concerned is square and filled with air. 
The walls, solid and conductive, have a finite thickness and a 
local heat source with conditions of heat exchange by 
convection with the surrounding environment. 

It was found that, the average Nusselt number increases with 
the Rayleigh number and the thermal conductivity ratio. 
However, it decreases with surface emissivity and the ratio of 
wall thickness to cavity spacing. It is important to note that the 
above investigations consider constant hot and cold 
temperatures in the study of natural convection in finned 
enclosures. The novelty of our work lies in (i) the consideration 
of a linear temperature profile at the level of the fins, (ii) the 
adoption of our own boundary conditions, (iii) the presentation 
of the velocity fields not plotted in the research aroused. Indeed, 
the main objective of the present study is to analyze the natural 
convection in laminar and permanent regimes in a square 
enclosure equipped with fins heated in a non-uniform way 
according to a linear temperature profile. A careful analysis of 
the effect of the heating elements on the heat transfer inside the 
cavity will be carried out by imposing well-defined boundary 
conditions, for various parameters, namely the Rayleigh 
number, the Prandtl number, the height and fin width and 
number of heating elements. 

II. PHYSICAL MODEL 

The physical model considered is shown in Figure 1. It is a 
cavity of length L and height H.  
 
 
 
 
 
 
 
 

III.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Schematic representation of the physical model used. 

 
 
The vertical walls are thermally insulated. As for the horizontal 
walls of the enclosure, they are maintained at different 
temperatures Tc and 𝑇௛
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Identical fins, of thickness l and height h, are placed 
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a temperature 𝑇௛
ᇱ  such thath/H = 1/5and its width l/L = 1/20.The 

heat transfer in the cavity is done by natural convection and the 
Prandtl number is 0.71. The vector g represents the acceleration 
due to gravity. 
 

III. MATHEMATICAL MODEL 

 
A dimensionless form of the equations reduces the number of 
independent parameters in the equations and makes the 
solutions more general for a given set of parameters. It helps to 
save machine time by increasing the convergence speed of the 
solution. 
The dimensionless equations are derived in such a way that only 
the Prandtl and Rayleigh numbers of the fluid are dimensionless 
parameters. 

A. Governing equations 

 
The mathematical model used is based on the classical 
equations of conservation balances (mass, momentum and 
energy), is given by equations (1), (2), (3) and (4). 
- For the mass balance equation: 
 

డఘ

డ௧
+

డ(ఘ௨)

డ௫
+

డ(ఘ௩)

డ௬
= 0                        (1) 

- For the momentum balance equation along the x direction: 
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- For the momentum balance equation along the y direction: 
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- For the energy balance equation:  
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The governing equations given by the relations (1) to (4) with 
their corresponding boundary conditions are given in a 
dimensionless form in order to generalize the study. It should 
also be noted that the terms of turbulence and those dependent 
on time are not taken into account in this study. We define the 
expressions of the speed as a function of the current function 
as: 

𝑣 = −
𝜕𝜓

𝜕𝑥
; 𝑢 =

𝜕𝜓

𝜕𝑦
 

 
Consider u* and v*, T*, P*, x* and y*, the dimensionless forms of 
the components of velocity vectors, temperature, pressure and 
space variables: 
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𝜓∗ =
𝜓

𝛼
; 𝑇௥௘௙ =

𝑇௛ + 𝑇௖

2
 ;  ∆𝑇 = 𝑇௛ − 𝑇௖ 

𝑢௥௘௙ = 𝑣௥௘௙  = ඥ𝑔𝛽𝐻∆𝑇 ;  𝑃௥௘௙ = 𝜌𝑢௥௘௙
ଶ  

The index ref represents the reference value for all the 
variables. 
Tc: is the cold temperature; Th: hot temperature.  
The temperatures 𝑇௛and 𝑇௖become equal to 1 and 0 on a 
dimensionless scalar. 
The local Nusselt number at the hot wall is given by: 
 

𝑁𝑢௅ = −
𝐿

∆𝑇
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While the average Nusselt number is represented by: 
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B.  Numerical Scheme and Solving Method 

 
The final form of the general two-dimensional discretization 
equation is written: 
 
𝑎௉𝜙௉ = 𝑎ௐ𝜙ௐ + 𝑎ா𝜙ா + 𝑎ௌ𝜙ௌ + 𝑎ே𝜙ே + 𝑏                        (5) 
 
with  

𝑎ா = 𝐷௘𝐴(|𝑃௘|) + Max [−𝐹௘ , 0] 
𝑎ௐ = 𝐷௪𝐴(|𝑃௪|) + Max [𝐹௪ , 0] 
𝑎ே = 𝐷௡𝐴(|𝑃௡|) + Max [−𝐹௡ , 0] 

𝑎ௌ = 𝐷௦𝐴(|𝑃௦|) + Max [𝐹௦ , 0] 
with 

𝐴(|𝑃௜|) = 𝑀𝑎𝑥[0 , (1 − 0.1|𝑃|)ହ] 
 
According to the power law used in this calculation, 
 

𝑏 = 𝑆஼∆𝑥∆𝑦 + 𝑎௉
଴𝜙௉

଴ + 𝑀 
𝑎௉ = (𝑎ௐ + 𝑎ா + 𝑎ே + 𝑎ௌ) + ∆𝐹 + (𝑎௉

଴ − 𝑆௣∆𝑥∆𝑦) 
∆𝐹 = 𝐹௘ − 𝐹௪ + 𝐹௡ − 𝐹௦ 

𝑎௉
଴ =

𝜌௉
଴Δ𝑥Δ𝑦

Δ𝑡
 

𝐹: The convection force or mass flow through the interfaces of 
the control volumes; 

𝐷: Diffusion conductance and 𝑃 =
ி

஽
  (Number of Peclet), with  

 
𝐹௘ = (𝜌𝑢)௘Δ𝑦 ;  𝐹௪ = (𝜌𝑢)௪Δ𝑦 

𝐹௡ = (𝜌𝑣)௡Δ𝑥 ; 𝐹௦ = (𝜌𝑣)௦Δ𝑥                                      (6) 
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M: Modification to momentum equations 
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(𝑀 = 0 for incompressible fluids where the density does not 
change with time). 
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IV. NUMERICAL RESOLUTION 

Governing equations, from (1) to (4), were used in their 
dimensionless form in the calculation with the aim of reducing 
the number of independent parameters in the equations and 
making the solutions more general for a data set of parameters 
in a concern for gain in machine time by increasing the speed 
of convergence of the solution. The characteristic 
dimensionless numbers are those of Prandtl and Rayleigh. The 
numerical modeling of the problem was established through the 
resolution of fluid dynamics equations, using the finite volume 
method with adequate boundary conditions. The power law 
scheme is chosen and used in this calculation, the Rayleigh 
numbers also used are in the range 103≤ Ra ≤106, while the 
Prandtl number is taken equal to Pr=0.71. The mesh grids used 
in the calculation are of different sizes depending on the 
geometry of the cavity, ranging from 102 × 102 up to 302 × 
302. They are regular in the temperature calculation and are 
staggered for the speed calculation. A convergence test of an 
order taken in an interval: 
 
10ିଶ ≤ 𝜀 ≤ 10ିସ based on the residuals of T, u and v, is 
applied in this calculation as follows: 
 

∅(௡) − ∅(௡ିଵ) = 𝜀 
 

V. BOUNDARY CONDITIONS 

The boundary conditions used for solving the governing 
equations, (1) to (4), are related to the non-slip condition for the 
velocity and the Dirichlet or Newman condition for the 
temperature. The fins are heated at non-uniform 
temperature, 𝑇௛

ᇱ given by  

𝑇௛
ᇱ = 𝑇௛ − (𝑇௛ − 𝑇௖)

𝑥 

𝐿
 

 
For temperature, the dimensionless boundary conditions are: 
Bottom wall: 
 
-𝑇∗(𝑥∗, 0) = 1 − 𝑥∗for the variable hot temperature at the level 
of the fins and on the rest of the wall. 
 
Top wall: 
 
-𝑇∗(𝑥∗, 1) = 0 is a constant cold temperature. 

-   0,0 *
*

*





y
x

T
on the left wall. 

-   0,1 *
*

*





y
x

T
on the right wall. 

* For velocities and stream functions: 
-u*(0,y*)=u*(1,y*)=0 ; u*(x*

,0)=u*(x*,1)=0 
and v*(0,y*)=v*(1,y*)=0 ; v*(x*

, 0)=v*(x*,1)=0 
- 𝜓*(0,y*)=𝜓* (1,y*)=0 ; 𝜓* (x*

, 0)=𝜓* (x*,1)=0 
- u*=v*=𝜓*=0 at the fins.   
 
- A regular mesh (figure 2-a) is used for the calculation of the 
pressure fields, and of the temperature. 
 
- A staggered mesh whose nodes are located halfway from those 
of the main mesh, as shown in figure 2-(b,c) to calculate the 
horizontal u and vertical v components of the velocity. Each 
component of the velocity is staggered according to its 
direction. 

 
Mesh generating functions 
 
In the problem presented above, a sine function is used to 
produce the mesh in the x and y directions for the single cavities 
This function can be expressed mathematically as 
 

𝑥𝑢(𝑖)

𝐻
=

𝑖 − 2

𝑖𝑚𝑎𝑥
−

1

2𝜋
𝑠𝑖𝑛 ൬2𝜋

𝑖

𝑖𝑚𝑎𝑥
൰ 𝑖 = 𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 

𝑦𝑣(𝑖)

𝐻
=

𝑗 − 2

𝑗𝑚𝑎𝑥
−

1

2𝜋
𝑠𝑖𝑛 ൬2𝜋

𝑗

𝑗𝑚𝑎𝑥
൰     𝑗 = 𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥 

 
with imin=jmin=2, imax=NI-2, and jmax=NJ-2 

 
                                            (c) 

Fig. 2: Storing used parameters 
(a) Storage of pressure and temperature P,T 

(b) Storage of horizontal velocity u 
(c) Storage of vertical velocity v 

 
The sine function generates a non-uniform mesh that is 
carefully spaced near the wall and sparsely far away from the 
wall. 
For the cavities equipped with fins, it is preferred to use a 
uniform mesh defined as follows: 

𝑥𝑢(𝑖)

𝐻
=

𝑖 − 2

𝑖𝑚𝑎𝑥
;   𝑖 = 𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 

𝑦𝑣(𝑖)

𝐿
=

𝑗 − 2

𝑗𝑚𝑎𝑥
;   𝑗 = 𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥 

 

VI. CODE VALIDATION 

The developed computer code is validated by the Benchmark 
solutions relating to the problem of natural convection in a 
differentially heated square cavity under different Rayleigh 
numbers [22]. 
For the validation of the numerical code without the presence 
of fins case, the results of references [14, 15] correspond to a 
closed square cavity whose left and right vertical walls are 
differentially heated, while the horizontal walls are adiabatic.  
The validation of the computer code in the case of finned 
surface is done [22]. The results of reference [8] correspond to 
a closed square cavity. The bottom wall is characterized by the 
presence of an obstacle, while the left and right vertical walls 
are maintained at a constant cold temperature 𝑇௖, while the 
walls horizontals are maintained adiabatic, the isothermal 
obstacle is maintained at a constant temperature 𝑇௛ and is 
placed at a well determined distance from the right and left wall. 
Table 1 gives the results comparison between our results for 
maximum, minimum and average Nusselt number with those of 
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the literature review for a cavity without fins under the same 
operating conditions. 
 

VII. RESULTS PRESENTATION  

The cavity model used in the computer code where the 
dimension les height and width of the fin equal respectively 
h/H=1/5 ,l/L=1/20, the distance between fins is: 
d/L=((L-N×l)/(N+1))/L for N fins. 
We take: Pr=0.71 , 𝑇௛

ᇱ  variable  and 10ଷ ≤ 𝑅𝑎 ≤ 10଺ 
 
*Case of a cavity without fins 
With linear temperature profile: 𝑇௛

ᇱ = 𝑇௛ − (𝑇௛ − 𝑇௖)
௫

௅
 

The results are plotted in the form of isotherms, current 
functions and iso-velocities u e v respectively. 
  The contours of isotherms, iso-currents and iso-velocities u 
and v, as well as the local Nusselt number as function of the 
Rayleigh number of the top wall and the bottom wall are plotted 
respectively for the Rayleigh values:103,104,10 and106 : 
Figure 3 illustrates the isotherms, the streamlines and the iso-
velocity contours (u and v) for Pr=0.71 and Ra=103 respectively 
and without fins. 
- Linear heating of the bottom wall without fins 

 
 

Fig. 3: Results for a finless cavity at Ra=103 
Linear heating of the bottom wall without fins 

 
Figures (4-a and 4-b) show the local Nusselt number for top and 
bottom wall for Pr=0.71 and Ra=103respectively and without 
fins. 

 
 

Fig. 4-a: Local Nusselt number 
Top  wall, for a finless cavity at Ra=103 

 

 
 

Fig. 4-b: Local Nusselt number 
bottom wall, for a finless cavity at Ra=103 

 
 
 
 

Table 1. Results comparison between the present study and those of the 
literature review 

 
Ra Nus [16] [17] [18] [19] [20] [21] 

FEM-DSC 
Present 
study 

 
103 

Max 
Min 
Moy 

1.50 
0.692 
1.12 

- 
- 
- 

- 
- 

1.117 

1.47 
0.623 
1.074 

1.5062 
0.6913 

- 

1.501-1.444 
0.691-0.665 
1.117-1.073 

1.506 
0.697 

1.1008 
 

104 
Max 
Min 
Moy 

3.53 
0.586 
2.243 

3.5 
- 
- 

- 
- 

2.243 

3.47 
0.497 
2.084 

3.5305 
0.5850 

- 

3.576-3.441 
0.577- 0.528 
2.254-2.155 

3.535 
0.605 
2.225 

 
105 

Max 
Min 
Moy 

7.71 
0.729 
4.52 

7.71 
- 
- 

- 
- 

4.521 

7.71 
0.614 

4.3 

7.7084 
0.7282 

- 

7.945- 7.662 
0.698- 0.678 
4.598 – 4.352 

7.724 
0.784 
4.486 

 
106 

Max 
Min 
Moy 

17.92 
0.989 

8.8 

17 
- 
- 

- 
- 

8.806 

17.46 
0.716 
8.743 

17.5308 
0.9845 

- 

17.86- 17.39 
0.9132- 
0.903 

8.976- 8.632 

17.4912 
1.185 

8.7268 

 
 
** Case of a cavity with fins 
Figure 5 illustrates the isotherms, the streamlines and the iso-
velocity (u and v) contours for different fin numbers (N=1, 2, 
3, 5, 7) with h/H=0.20, w/W=0.05 and for: Pr=0.71 and 
Ra=103. 
 
 
-Case of a one fin 
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-Case of two fins 
 

 
 
-Case of three fins  

 
 
 
-Case of five fins 

 

 
 
 

-Case of seven fins 

 
 

Fig. 5: Results for a finned cavity at Ra=103 
 
Figure 6 illustrates the isotherms, the streamlines and the iso-
velocity contours (u and v) for Pr=0.71 and Ra=104 respectively 
without fins. 

 
 

Fig. 6: Results for a finless cavity at Ra=104 

 
Figures (7-a and 7-b) show the local Nusselt number for top and 
bottom wall for Pr=0.71 and Ra=104 respectively without fins. 
 

 
 

Fig. 7-a: Local Nusselt number 
Top wall, for a finless cavity at Ra=104 
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Fig. 7-b: Local Nusselt number 
bottom wall, for a finless cavity atRa=104 

 
Figure 8 illustrates the isotherms, the streamlines and the iso-
velocity (u and v) contours for different fin numbers (N=1, 2, 
3, 5, 7) with h/H=0.20, w/W=0.05 and for: Pr=0.71 and 
Ra=104. 
 
-Case of a one fin 

 

 
 
 
-Case of two fins 

 
 
 

 
 
 
 
-Case of seven fins 

 
 

 
 

Fig. 8: Results for a finned cavity at Ra=104 
 

 
Figure 9 shows the isotherms, the streamlines and the iso-
velocity contours (u and v) for Pr=0.71 and Ra=105 respectively 
without fins. 
 
 

 

 
 

Fig. 9: Results for a finless cavity at Ra=105 
 

Figures (10-a and 10-b) illustrate the local Nusselt number for 
top and bottom wall for Pr=0.71 and Ra=105, respectively 
without fins. 
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Fig. 10-a: Local Nusselt number 
Top wall, for a finless cavity at Ra=105 

 
 

 
 

Fig. 10-b: Local Nusselt number 
bottom wall, for a finless cavity atRa=105 

 
 
Figure 11 shows the isotherms, the streamlines and the iso-
velocity (u and v) contours for different fin numbers (N=1, 2, 
3, 5, 7) with h/H=0.20, w/W=0.05 and for: Pr=0.71 and 
Ra=105. 
 
 
-Case of one fin 

 
 
 
 
 
 
 

-Case of two fins 

 
 
-Case of three fins 

 

 
 
-Case of five fins 
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-Case of seven fins 

 
Fig. 11: Results for a finned cavity at Ra=105 

 

Figure 12 illustrate the isotherms, the streamlines and the iso-
velocity contours (u and v) for Pr=0.71 and Ra=106 respectively 
without fins. 

 
Fig. 12: Results for a finless cavity at Ra=106 

 

Figures (13-a and 13- b) show the evolution of the local Nusselt 
number for top and bottom wall for Pr=0.71 and 
Ra=106respectivelywithout fins 

 
 

Fig.13-a: Local Nusselt number 
Top wall, for a finless cavity at Ra=106 

 

 
 
 
 

 
 

 
Fig.13-b: Local Nusselt number 

bottom wall, for a finless cavity atRa=106 
 
 
Figure 14 illustrates the isotherms, the streamlines and the iso-
velocity (u and v) contours for different fin numbers (N=1, 2, 
3, 5, 7) with h/H=0.20, w/W=0.05 and for: Pr=0.71 and Ra=106 

 
-Case of one fin 

 
 
-Case of two fins 
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-Case of three fins 

 

 
 
-Case of five fins 

 
 
-Case of seven fins 

 
 

Fig. 14: Results for a finned cavity at Ra=106 
 

VIII. DISCUSSIONS 

*Linear heating of the bottom wall without fins 
The contours of the isotherms, of the current functions, as well 
as the iso-velocities for Ra = 103-106 and Pr = 0.71 are 
represented in figures (3), (6), (9) and (12). When the bottom 
wall is heated in a non-uniform and linear manner, the non-
uniform heating suppresses singularities at the edges of the 
bottom wall and exhibits an even temperature distribution 
throughout the cavity. 
For Ra = 103, the thermal boundary layer develops only over 
60% of the cavity (figures 3). It is observed in the vicinity of 
Ra=104, it can be noted that the temperature at the bottom wall 
is not uniform and a temperature maximum occurs(Figure 6), at 
the center, therefore, higher rates of heat transfer occur in the 
center.  
At Ra = 105, the circulation model is qualitatively similar to the 
uniform heating case (Figure 9). 
Due to non-uniform bottom heating, the heating rate near the 
wall is generally lower, which induces less buoyancy resulting 
in a lower thermal gradient throughout the domain. The 
uniformity of the temperature distribution and the temperature 
gradient are even less observed on the regime of the central part 
inside the upper half of the domain. The effect of lower 
buoyancy also leads to a large area of temperature stratification 
at the vertical line of symmetry. 
From Ra = 106, the mechanism of convection becomes more 
pronounced and consequently the central vortex moves 
upwards. Figure (12) also shows that the isotherms are 
horizontal and vertical inside enclosure; the boundary layers 
become very thin, this can be attributed to a current inside the 
cavity, which also causes a reduction in temperature gradients 
in the center of the cavity at high convection. 
The contours of the iso-velocities reveal several important 
characteristics, in the contours of the iso-velocities-u, for the 
values of Ra=103,104,105 and 106, we notice four horizontal 
vortices, which form, two below the two others. For the 
contours of the iso-velocity-v, if we take the values of Ra=103, 
104 and 105, three dominant vertical circulations one of each on 
the left middle and right zones of the cavity almost completely 
swept. The shapes can be simulated for the three values quoted, 
a slight deformation is observed at the extremities of the 
vortices with the increase in the number of Rayleigh Ra=106. 
Figures (4), (7) , (10) and (13), present the variation of the local 
Nusselt number compared to the cold wall of height and the 
bottom hot wall for different Rayleigh numbers, the variation is 
more seen for hot walls which explains the higher temperature 
effect. 
 
** Linear heating of the bottom wall with fins 
The contours of isotherms, current functions and iso-velocities 
are represented in figures (5), (8), (11) and (14) for Ra = 103-
106 and Pr = 0.71 when the bottom wall is heated in a non-
uniform linear manner, the non-uniform heating suppresses 
singularities at the edges of the bottom wall and presents regular 
temperature distribution throughout the cavity. 
For Ra = 103 and Pr = 0.7 (Figure 5), the thermal boundary 
layer develops more than 70% of the cavity, which is lower 
compared to the case of uniform heating, it is observed in the 
around Ra =104 (Figure 8). It can be noted that the temperature 
at the bottom wall is not uniform and a temperature maximum 
occurs at the center. Therefore, higher rates of heat transfer 
occur at the center. 
At Ra = 105(Figure 11), due to non-uniform bottom heating, the 
heating rate near the wall is generally lower, which induces less 
buoyancy resulting in a lower thermal gradient throughout the 
domain.  
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The uniformity of the temperature distribution and the 
temperature gradient are even less observed on the regime of 
the central part inside the upper half of the domain. The effect 
of lower buoyancy also leads to a large zone of temperature 
stratification at the vertical line of symmetry. 
From Ra = 106 (Figure 14), the mechanism of convection 
becomes more pronounced and therefore the central vortex 
moves upwards. We also notice that the isotherms are 
horizontal and vertical inside the enclosure, the boundary layers 
become very thin, this can be attributed to a current inside the 
cavity which also causes a reduction in temperature gradients 
in the center of the high convection cavity. 
The contours of the iso-velocity reveal several important 
characteristics, in the contours of the iso- velocity-u, for the 
values of Ra=103, 104 and 105, we notice four main horizontal 
vortices form above the fins, two other secondary ones form at 
the bottom of the cavity above the hot wall. For the value of 
Ra=106, two main vortices move away upwards towards the 
adiabatic wall while in the rest of the cavity several secondary 
vortices form around the fin. 
For the contours of the iso-velocity-v, if we take the values of 
Ra=103, 104 and 105 three dominant vertical circulations one of 
each on the left middle and right zones of the cavity almost 
completely swept. The gaits can be simulated for the three 
values quoted, a slight deformation is observed at the 
extremities of the vortices with the increase in the number of 
Rayleigh Ra=106. 
It should be noted that the presence of the fins has only slightly 
influenced the temperature, streamlines or iso-velocities, the 
change is only observed in the vicinity of the fins. 
We present below the average Nusselt number variation for top 
and bottom walls, as function of Rayleigh number for different 
number of fins. 
Figure 15 shows the evolution of the average Nusselt number 
with respect to the Rayleigh number for different numbers of 
fins with h/H = 0.20 and w/W = 0.05 on the hot and cold 
horizontal walls respectively. 
As shown in the figure, the Nusselt number increases with 
increasing Rayleigh number for a number of fins ranging from 
0 to 7 fins. The maximum values of the Nusselt number are 
reached for the case with three fins near the hot side of the 
cavity, on the other hand, the maximum values of the Nusselt 
number are reached for the case with seven fins near the cold 
side of the cavity. 
Figure 16 illustrates the variation of the average Nusselt 
number function of the number of fins. Notice that the 
maximum value of the average Nusselt number is reached for 
the case with three fins near the hot side of the cavity at Ra=106, 
however it is reached at seven fins near the cold wall. 
Figure 17 shows the evolution of the average Nusselt number 
in according with the height of the fin for different numbers of 
fins, as shown in the figure. Note that the average Nusselt 
number is reached for the case of two and three fins near the hot 
side of the cavity at h/H=3/5, contrary to the case of the cold 
wall, it is reached at two, tree and seven fins with h/H=3/5. The 
average Nusselt number variation for the top and bottom wall 
is presented below, as function of the number of fins for 
different Rayleigh numbers. 

 
 
 

 

 
 

Fig. 15: Average Nusselt number according to Rayleigh number 
 
 

 

 
 

Fig.16: Average Nusselt number according to the number of fins 
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Fig. 17: Average Nusselt number at Ra=105 in according with  
the height of the fin 

 

IX. CONCLUSION 

A numerical study has been performed to investigate natural 
convection in a square cavity for laminar flow case. The cavity 
is made up of a finite number of fins on the bottom wall whose 
purpose is to improve the overall rate of heat transfer. The fins 
are heated using a non-uniform linear temperature profile; the 
vertical walls are adiabatic while the horizontal walls are 
subjected to cold temperatures at the top walls and hot and non-
uniform temperatures at the bottom. The finite volume method 
is used for solving the governing equations. This method allows 
to obtain more realistic solutions in terms of isotherms, current 
functions as well as iso-velocities for a wide range of Rayleigh 
number and a Prandtl number fixed at 0.71. 
The heat transfer rate is lower at the edges by the non-uniform 
heating, while it exhibits higher heat transfer rates at the center 
of the bottom wall. Boundary layer formation has been shown 
to occur, thermal boundary layer has been observed to grow 
about 60% for non-uniform heating. Non-uniform heating can 
be used in small regimes followed by uniform heating. This 
combination can be suitable to achieve improved heat transfer 
effects The results obtained are also very useful for a better 
understanding of heat transfer by natural convection which 
takes place in partitioned enclosures, and towards the best and 
cheapest way to achieve thermal performance of these heat 
transfer elements. 
Finally, we would like to stress the idea that the modeling of a 
heat transfer or a fluid flow system must be guided by the 
objectives and the constraints of the system. 
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