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Axisymmetric Heat Conduction in a Cracked Layer
Subjected to Prescribed Temperatures

Zakaria Baka and Belkacem Kebli

Abstract—This paper presents an analysis of an axisymmetric heat conduction problem in a layer with circular heat
sources on its external surfaces, maintaining constant temperatures. Additionally, the layer contains a circular crack
along its middle plane, either internally or externally, leading to a mixed boundary value problem. In this study, dual
integral equations are derived using Hankel’s transform technique. In contrast to the conventional approach that relies on
Fredholm’s equations, these dual integral equations are directly reduced to an infinite set of simultaneous equations. The
investigation subsequently provides closed-form expressions involving special functions for the thermal fields and heat flux
intensity factor. Moreover, the solution for the case of a half-space medium is obtained as a limiting case of this study. The
accuracy and validity of the present approach are also confirmed through comparison with numerical simulations. Sets of
plots are provided to analyze the influence of the crack, surface radius of the applied temperatures, and the layer thickness
on various physical quantities.

Keywords—Heat conduction, Cracked layer, Mixed boundary value problem, Dual integral equations, Heat flux
intensity factor.

NOMENCLATURE

a Radius of the heated or cooled area, m.
an Series coefficients.
A, B, C Unknown functions.
Amn Matrix elements of the algebraic system.
b Radius of the penny-shaped crack, m.
bm Vector elements of the right-hand side of the alg-

ebraic system.
E, K Complete elliptic integrals of the second and first

kinds.
h Half thickness of the layer, m.
Jν Bessel function of the first kind of order ν.
k Thermal conductivity, W/(mK).
KT , K

′
T Heat flux intensity factors, W/m3/2.

qr, qz Heat fluxes in the r- and z-directions, W/m2.
r, z Radial and axial coordinates, m.
si Sine integral function.
T Temperature, K.
T0 Constant temperature, K.
Tn, Un Chebyshev’s polynomials of the first and second

kinds of degree n.

Greek symbols
αn Series coefficients.
δ Dirac delta function.
δℓm Kronecker delta.
ρ, ζ Dimensionless radial and axial coordinates.
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I. INTRODUCTION

The study of heat conduction phenomena in solids has significant
practical importance in various engineering disciplines, includ-
ing electronic equipment cooling, aerospace technology, and the
nuclear industry. Moreover, the obtained solutions are crucial for
determining thermal displacements and stresses in related ther-
moelastic problems. Several pertinent literature sources, such
as [1–3], offer comprehensive insights into the mathematical
modeling of heat conduction, providing valuable resources for
further exploration of the subject matter. Over the past decades,
mixed boundary value problems, where different conditions
are applied to distinct regions of the same boundary, have gar-
nered considerable attention in the field of heat conduction. The
presence of singularities in these problems often complicates
the derivation of solutions using traditional methods, posing
significant challenges to researchers. Several researchers have
made notable contributions to addressing these challenges. For
instance, Dhaliwal [4, 5] investigated heat conduction problems
in a slab and effectively reduced the resulting equations to Fred-
holm equations. He then obtained the solution by employing
the successive approximation method. Beck [6] examined the
case of a half-space body exposed to a uniform heat flux over a
circular area and derived an exact series expression for tempera-
tures. Mehta and Bose [7] studied the steady-state temperature
field in a layer subjected to a constant flux over a circular area,
presenting a series solution expressed in terms of the Gauss hy-
pergeometric function. The steady-state heat conduction prob-
lem in a semi-infinite medium under radiation conditions is
addressed by Gladwell et al. [8]. They transformed the cases
into integro-differential equations and further simplified them
into a set of simultaneous equations. Additionally, many authors
have focused on studying thermal constriction resistance [9–13].
Cracked solids present specific challenges, prompting various
investigations aimed at enhancing our understanding of heat
conduction phenomena and the impact of cracks on the thermal
behavior of solids. The majority of these studies have been con-
ducted within the context of thermoelasticity [14–18]. Notably,
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Sih [19] was first determined that the temperature gradient or
heat flux in the vicinity of the crack tip follows an inverse square-
root singularity. Building upon this pioneering work, subsequent
researchers have further explored this singularity behavior, em-
ploying diverse analytical and numerical methods [20–25]. With
the progress of computer technology, numerical methods have
experienced significant advancements. However, challenges
related to mesh optimization, computation time, and accuracy
persist. On the other hand, despite the difficulties involved in
constructing mathematical models in theoretical research, ana-
lytical techniques continue to be extensively employed. These
techniques provide valuable alternatives for investigating so-
lutions in several fields, including heat conduction in cracked
solids, and offer distinct advantages compared to numerical ap-
proaches. In this context, we aim to investigate the steady-state
heat conduction in a cracked layer subjected to circular heat
sources with constant temperatures. We consider two types
of circular cracks, namely internal and external cracks. The
two problems are reduced to a mixed boundary value problem,
which we address by employing the Hankel transform technique.
This enables us to derive dual integral equations. Using the
Gegenbauer addition formula and several integral relations, we
simplify these equations into an infinite set of simultaneous
equations. Our analysis yields explicit expressions for tempera-
ture, heat fluxes, and the flux intensity factor. Additionally, we
derive the solution for a semi-infinite medium without cracks
as a limiting case. We also validate our results through a finite
element simulation using ANSYS software. Selected results are
presented graphically, providing insights into the behavior and
characteristics of the heat conduction process in solids when
cracks are present.

II. FORMULATION OF THE PROBLEM

As Fig. 1 shows, the physical domain of interest is a layer
with a thickness of 2h, subjected to prescribed temperatures
and containing either a penny-shaped crack or an external crack.
The penny-shaped crack is assumed to be thermally insulated,
whereas the external crack surfaces are maintained at the refer-
ence temperature, T = 0. An axisymmetric cylindrical coordi-
nate system (r, z) is adopted, such that the penny-shaped crack
lies in the circular region r ≤ b, positioned at a depth h from the
external surface of the layer. In contrast, the external crack is
situated in the opposite region (r ≥ b, z = h). With regards to
the thermal properties, the solid is considered homogeneous and
isotropic, with a thermal conductivity denoted as k.

In the first case involving the presence of a penny-shaped crack
within the layer, as depicted in Fig. 1(a), the temperatures
within a circular region of radius a on both the lower and upper
surfaces of the layer are assumed to remain constant at T0 and
−T0, respectively. Conversely, in the second case, involving an
external crack, the disc-shaped heat sources are both imposing
an identical constant temperature T0, as shown in Fig. 1(b).
Additionally, the remaining surfaces in both cases are kept at
the reference temperature (T = 0).
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Fig. 1: A layer medium containing (a) an insulated penny-
shaped crack; (b) an external crack.

Under the assumption of steady-state thermal loading, and with
no heat generation assumed in the medium, the governing equa-
tion describing the temperature change T for the considered
problems is given as

▽2T (r, z) = 0, ▽2 ≡ ∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
, (1)

where ▽2 represents Laplace’s operator expressed in the axisym-
metric cylindrical coordinate system.

Since the first problem exhibits anti-symmetry and the second
displays symmetry with respect to the plane z = 0, we can focus
our investigation on the analysis of the half-layer 0 ≤ z ≤ h of
the medium. Thus, both problems can be simplified into the
single mixed boundary value problem depicted in Fig. 2.

a
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h

r

z

o
T = T0 T = 0
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T = 0

∂T

∂z
= 0

Fig. 2: Geometry of the considered mixed boundary value prob-
lem.

This heat conduction problem is governed by (1), which is
subject to the following boundary conditions

T (r, 0) =

{
T0, r ≤ a,

0, r > a,
(2a)

∂T

∂z
(r, h) = 0, r < b, (2b)

T (r, h) = 0, r ≥ b. (2c)

Furthermore, the regularity conditions require the thermal fields
to approach zero as r tends toward infinity (r → ∞).
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III. ANALYTICAL SOLUTION

This section presents the solution methodology for the mixed
boundary value problem illustrated in Fig. 2. The proposed so-
lution scheme involves the derivation of integral dual equations,
which are subsequently reduced to an infinite system of alge-
braic equations. Explicit analytical expressions for the thermal
fields and heat flux intensity factor can then be derived based on
the solution of the algebraic equations.

A. Derivation of the dual integral equations

To effectively solve the considered problem, it is convenient to
use the Hankel integral transform technique, which is partic-
ularly well-suited for problems with axisymmetric cylindrical
configurations. Specifically, the direct and inverse zeroth-order
Hankel transforms of a given function, denoted by f , with re-
spect to the radial variable r, are defined by [26, Eqs. (7.2.8)
and (7.2.10)]

fH(ξ) =

∫ ∞

0

r f(r) J0(ξ r) dr, (3a)

f(r) =

∫ ∞

0

ξ fH(ξ) J0(r ξ) dξ, (3b)

respectively, where J0 stands for the zeroth-order Bessel func-
tion of the first kind, and ξ represents the transformed variable.
Accordingly, by applying the Hankel transform to the Laplace
equation (1), yields

∂2TH

∂z2
(ξ, z)− ξ2 TH(ξ, z) = 0, (4)

which is a second-order ordinary differential equation within TH

represents the Hankel transform counterpart of the temperature
T . Considering the boundary condition at infinity, the general
solution of (4) can be expressed in the following form

TH(ξ, z) =
cosh(z ξ)A(ξ) + sinh(z ξ)B(ξ)

ξ
, (5)

where A and B represent unknown functions in terms of ξ to be
determined through the boundary conditions.

Applying the Hankel transform to the boundary condition (2a),
gives

TH(ξ, 0) = T0

∫ a

0

r J0(ξ r) dr. (6)

Thus, using the expression for TH given by (5) and the relation

specified in [27, Eq. (5.56 2)], which states that
∫

xJ0(x) dx =

xJ1(x), we find

A(ξ) = aT0 J1(a ξ). (7)

Substituting (7) in (5), one obtains

TH(ξ, z) =
sinh(z ξ)B(ξ) + aT0 cosh(z ξ) J1(a ξ)

ξ
. (8)

Consequently, the number of unknown functions is reduced.

Thereafter, we can perform the Hankel inversion transform (3b)
on (8), yielding the following expression for the temperature T

T =

∫ ∞

0

[
sinh(z ξ)B(ξ) + aT0 cosh(z ξ) J1(a ξ)

]
J0(r ξ) dξ. (9)

To simplify the notation used in this paper, we have not explicitly
mentioned the dependence of the functions on the variables (r, z)
throughout the text. Nevertheless, this dependence should be
understood implicitly.

Continuing with the derivation, we can obtain the temperature
gradient by differentiating (9) with respect to z, giving us the
expression below

∂T

∂z
=

∫ ∞

0

ξ
[
cosh(z ξ)B(ξ)+aT0 sinh(z ξ)J1(a ξ)

]
J0(r ξ) dξ. (10)

Inserting (10) and (9) into the respective boundary conditions
(2b) and (2c), yields∫ ∞

0

ξ
[
cosh(h ξ)B(ξ) + aT0 sinh(h ξ)

× J1(a ξ)
]
J0(r ξ) dξ = 0,

r < b, (11a)

∫ ∞

0

[
sinh(h ξ)B(ξ) + aT0 cosh(h ξ)

× J1(a ξ)
]
J0(r ξ) dξ = 0,

r ≥ b. (11b)

To simplify the latter integral equations, we introduce the func-
tion C as follows

C(ξ) = sinh(h ξ)B(ξ) + aT0 cosh(h ξ) J1(a ξ). (12)

Then, B can be expressed in terms of C as

B(ξ) = csch(h ξ)C(ξ)− aT0 coth(h ξ) J1(a ξ), (13)

where csch(h ξ) = 1/ sinh(h ξ). Replacing B in (11) with its
expression given by (13), and after some algebraic manipulation,
we finally get∫ ∞

0

ξ coth(h ξ)C(ξ) J0(r ξ) dξ

= aT0

∫ ∞

0

ξ csch(h ξ) J0(r ξ) J1(a ξ) dξ,

r < b, (14a)

∫ ∞

0

C(ξ) J0(r ξ) dξ = 0, r ≥ b. (14b)

Equations (14a) and (14b) form dual integral equations for de-
termining the unknown function C.

B. Solution of the dual integral equations

Our task turns to determine the unknown function C through the
system of dual integral equations (14). To solve such kinds of in-
tegral equations with Bessel function kernels, several approaches
can be employed, including those used by Sneddon [28, 29],
Duffy [30], Sakamoto [31], Kebli and Madani [32]. Among
these approaches, the one presented in [31] has the advantage
of reducing the system of triple integral equations directly into
the solution of an infinite system of algebraic equations. This
approach, along with similar methods, have been increasingly
utilized in recent studies to solve diverse mixed boundary value
problems [33–37], indicating the broad range of applicability of
such techniques.

Therefore, in this work, we adopt the solution approach outlined
by Sakamoto [31] and use the following dual integral formula
[37, Eq. (A4)]

∫ ∞

0

Nn(ξ) J0(r ξ) dξ=


4
√
b2 − r2

π b2 r
U2n+1(r/b), r < b,

0, r > b,
(15)
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where n = 0, 1, 2, . . . , Nn(ξ) = ξ [Mn(ξ)−Mn+1(ξ)] and
Mn(ξ) = Jn+1/2 (b ξ/2) J−(n+1/2)(b ξ/2). Additionally, Un

is the Chebyshev polynomials of the second kind of de-
gree n. They are defined by the relation Un(x) = sin[(n +

1) arccos x]/ sin[arccos x] [27, Eq. (8.940 2)].

Accordingly, we express the function C as a series expansion
involving Bessel functions in the following form

C(ξ) = aT0

∞∑
n=0

an Nn(ξ), (16)

where an are unknown coefficients to be determined later. By
adopting this expression, we can readily deduce that (14b) is
automatically satisfied, as indicated by (15). Then, inserting
(16) into (14a), yields

∞∑
n=0

an

∫ ∞

0

ξ coth(h ξ)Nn(ξ) J0(r ξ) dξ

=

∫ ∞

0

ξ csch(h ξ) J0(r ξ) J1(a ξ) dξ,

r < b. (17)

In order to eliminate the radial variable r, we can utilize the
Gegenbauer addition formula below [27, Eq. (8.531 3)]

J0(r ξ) =

∞∑
m=0

(
2− δ0m

)
Xm(ξ) cos(mϕ), r < b, (18)

where Xm(ξ) = J2
m (b ξ/2), ϕ = 2 arcsin(r/b) and δℓm stands for

the Kronecker delta, which is defined by δℓm =

{
1, ℓ = m,

0, ℓ ̸= m.

By substituting (18) into (17), rearranging the terms, and inter-
changing the order of integration and summation, we get
∞∑

m=0

(2−δ0m) cos(mϕ)

∞∑
n=0

an

∫ ∞

0

ξ coth(h ξ)Nn(ξ)Xm(ξ) dξ

=

∞∑
m=0

(2−δ0m) cos(mϕ)

∫ ∞

0

ξ csch(h ξ)Xm(ξ) J1(a ξ) dξ.

(19)

Thereafter, by matching the coefficients of cos(mϕ) on both
sides of (19), we obtain the following infinite set of simultaneous
equations

∞∑
n=0

an

∫ ∞

0

ξ coth(h ξ)Nn(ξ)Xm(ξ) dξ

=

∫ ∞

0

ξ csch(h ξ)Xm(ξ) J1(a ξ) dξ,

(20)

where m = 0, 1, 2, . . .

In order to get a symmetric coefficient matrix and accelerate the
convergence of the previous algebraic system, we subtract the
(m+ 2)th equations from the mth equations in (20). As a result,
we arrive at an algebraic system for determining an, expressed
in matrix form as follows

∞∑
n=0

Amn an = bm, m = 0, 1, 2, . . . (21)

where Amn =

∫ ∞

0

coth(h ξ)Nn(ξ)Ym(ξ) dξ, Ym(ξ) =

ξ
[
Xm(ξ)−Xm+2(ξ)

]
and bm =

∫ ∞

0

csch(h ξ)Ym(ξ) J1(a ξ) dξ.

Consequently, we have effectively reduced the heat conduction
problems under consideration to solving an infinite set of simul-
taneous equations defined by (21). Notably, this system depends
only on the geometric parameters a, b and h.

C. Temperature and heat flux expressions

We now proceed to derive the expressions for temperature and
heat fluxes in terms of the series coefficients an. By considering
(13) and (16), we can explicitly express the temperature field
described by equation (9) as follows

T = aT0

{∫ ∞

0

csch(h ξ) sinh((h− z) ξ)J0(r ξ) J1(a ξ) dξ

+

∞∑
n=0

an

∫ ∞

0

csch(h ξ) sinh(z ξ)Nn(ξ) J0(r ξ) dξ

}
.

(22)

Furthermore, following the Fourier law of heat conduction, the
heat flux in the r- and z-directions can be expressed as qr =

−k ∂T/∂r and qz = −k ∂T/∂z, respectively. Consequently, their
expressions in terms of an can be obtained. Formally,

qr=a k T0

{∫ ∞

0

ξ csch(h ξ) sinh((h−z) ξ) J1(a ξ)J1(r ξ) dξ

+

∞∑
n=0

an

∫ ∞

0

ξ csch(h ξ) sinh(z ξ)Nn(ξ) J1(r ξ) dξ

}
,

(23a)

qz=a k T0

{∫ ∞

0

ξ csch(h ξ) cosh((h−z) ξ) J0(r ξ)J1(a ξ) dξ

−
∞∑

n=0

an

∫ ∞

0

ξ csch(h ξ) cosh(z ξ)Nn(ξ) J0(r ξ) dξ

}
.

(23b)

The planes z = 0 and z = h are of particular interest. When
considering the case where z = 0, the previously mentioned heat
flux expressions can be rewritten as

qr(r, 0) = a k T0

∫ ∞

0

ξ J1(a ξ) J1(r ξ) dξ, (24a)

qz(r, 0) = a k T0

{∫ ∞

0

ξ coth(h ξ) J0(r ξ) J1(a ξ) dξ

−
∞∑

n=0

an

∫ ∞

0

ξ csch(h ξ)Nn(ξ) J0(r ξ) dξ

}
.

(24b)

From the identity given by [27, Eq. (6.512 8)], we have∫ ∞

0

ξ J1(a ξ) J1(r ξ) dξ = δ(r − a)/a, (25)

where δ denotes the Dirac delta function, defined by

δ(x) =

{
∞, x = 0,

0, x ̸= 0.
(26)

Here, it is worth mentioning that the Dirac delta function is
frequently employed in problems involving concentrated loads
or local sources [3, ch. 9].

By making use of (25) and (A.6), we can finally express the heat
fluxes at the plane z = 0 as follows

qr(r, 0) = k T0 δ(r − a), (27a)

qz(r, 0) = a k T0

{∫ ∞

0

ξ
[
coth(h ξ)− 1

]
J0(r ξ) J1(a ξ) dξ

− 1

π a

E

(
2
√
a r

r + a

)
r − a

−
K

(
2
√
a r

r + a

)
r + a


−

∞∑
n=0

an

∫ ∞

0

ξ csch(h ξ)Nn(ξ) J0(r ξ) dξ

}
,

(27b)
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where K and E represent the complete elliptic integrals of the
first and second kinds, respectively. They are given as [27, p.
396]

K(y) =

∫ π/2

0

dx√
1− y2 sin2 x

, (28a)

E(y) =

∫ π/2

0

√
1− y2 sin2 xdx. (28b)

Regarding the plane z = h, by setting z = h in (22) and (23), we
get

T (r, h) = aT0

∞∑
n=0

an

∫ ∞

0

Nn(ξ) J0(r ξ) dξ, (29a)

qr(r, h) = a k T0

∞∑
n=0

an

∫ ∞

0

ξ Nn(ξ) J1(r ξ) dξ, (29b)

qz(r, h) =a k T0

{∫ ∞

0

ξ csch(h ξ)J0(r ξ)J1(a ξ) dξ

−
∞∑

n=0

an

∫ ∞

0

ξ coth(h ξ)Nn(ξ) J0(r ξ) dξ

}
.

(29c)

With the help of (15), (29a) is further simplified to

T (r, h) =
4 aT0

√
b2 − r2 H(b− r)

π b2 r

∞∑
n=0

an U2n+1(r/b), (30)

wherein H denotes the Heaviside step function defined by

H(x) =

{
0, x ≤ 0,

1, x > 0.

As for the heat fluxes, by virtue of (A.16) and (A.28), we obtain
the following expressions

qr(r, h)= −4 a k T0 H(b− r)

π b2 r2
√
b2 − r2

∞∑
n=0

an

{
2 (n+1) b r U2n(r/b)

−
[
(2n+ 1) r2 + b2

]
U2n+1(r/b)

}
,

(31a)

qz(r, h)= a k T0 H(r − b)

×
{∫ ∞

0

ξ csch(h ξ) J0(r ξ) J1(a ξ) dξ −
∞∑

n=0

an

×
[ ∫ ∞

0

(
ξ coth(h ξ)Nn(ξ)+

8 (n+1) cos(b ξ)

π b2

)
×J0(r ξ) dξ −

8 (n+ 1)

π b2
√
r2 − b2

]}
.

(31b)

In view of (31), it can be observed that qr and qz are proportional
to the inverse square-roots 1/

√
b− r and 1/

√
r − b, respectively.

This indicates that the heat fluxes exhibit the usual square-root
singularity in the vicinity of the crack tip b [19–22, 38].

D. The special case of a semi-infinite medium (h → ∞)

As h approaches infinity, this limiting case corresponds to a half-
space medium where a circular heat source imposes a uniform
temperature, while the rest of the surface is kept at a reference
temperature. In this case, the vector elements bm on the right-
hand side of the algebraic system (21) become zero, owing to
the limit lim

h→∞
csch(h ξ) = 0. As a result, the algebraic system

reduces to the following form
∞∑

n=0

Amn an = 0, m = 0, 1, 2, . . . (32)

leading to a trivial solution (an = 0). Additionally, we have
lim

h→∞
sinh((h − z) ξ) csch(h ξ) = e−z ξ. This readily simplifies

the expressions for the temperature and heat fluxes to

T = aT0

∫ ∞

0

e−z ξ J0(r ξ) J1(a ξ) dξ, (33a)

qr = a k T0

∫ ∞

0

ξ e−z ξ J1(a ξ) J1(r ξ) dξ, (33b)

qz = a k T0

∫ ∞

0

ξ e−z ξ J0(r ξ) J1(a ξ) dξ. (33c)

These expressions are identical to the exact solution derived in
Appendix B.

E. Heat flux intensity factor

As outlined in subsection II.C on page 33, the heat fluxes near
the crack tip exhibit a square-root singularity. To quantify the
strength of this singularity, a heat flux intensity factor is intro-
duced in an analogous way to the stress intensity factor. The lat-
ter plays a crucial role in understanding mechanical and thermal
stresses and crack behavior. The heat flux component perpendic-
ular to the crack, in our case, qz , is more directly related to crack
tip behavior and the generation of thermal stresses. Therefore,
the heat flux intensity factor, denoted as KT , pertains to this
component, and its definition is given by [38, Eq. (2.3)]

KT = lim
r→b+

√
2 (r − b) qz(r, h). (34)

Upon substitution of the heat flux expression provided by (31b)
into the aforementioned equation leads to

KT = a k T0 lim
r→b+

√
2 (r−b)

{∫ ∞

0

ξ csch(h ξ)J0(r ξ)J1(a ξ)dξ

−
∞∑

n=0

an

[ ∫ ∞

0

(
ξ coth(h ξ)Nn(ξ)

+
8 (n+ 1) cos(b ξ)

π b2

)
J0(r ξ) dξ −

8 (n+ 1)

π b2
√
r2 − b2

]}
.

(35)

Within this equation, only the last term is singular. Consequently,
this equation readily reduces to

KT =
8 a k T0

π b2
√
b

∞∑
n=0

(n+ 1) an. (36)

It is worth noting that the heat flux component parallel to the
crack is usually not included in standard heat flux intensity factor
calculations. Nevertheless, for the sake of completeness, we also
derive the heat flux intensity factor related to this component.

Let us denote the heat flux intensity factor associated with qr as
K′

T . Following a similar form as in (34), we can express K′
T as

K′
T = lim

r→b−

√
2 (b− r) qr(r, h). (37)

Inserting (31a) into (37), yields

K′
T = −4

√
2 a k T0

π b2
lim

r→b−

∞∑
n=0

an

r2
√
r + b

{
2 (n+1) b r

× U2n(r/b)−
[
(2n+ 1) r2 + b2

]
U2n+1(r/b)

}
.

(38)
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We then proceed with the evaluation of the limit using the
trigonometric forms of the Chebyshev polynomials Un and
L’Hôpital’s rule. We have

lim
r→b−

Un(r/b) = lim
r→b−

sin
[
(n+ 1) arccos(r/b)

]
sin

[
arccos(r/b)

] (39a)

= lim
r→b−

d

dr
sin

[
(n+ 1) arccos(r/b)

]
d

dr
sin

[
arccos(r/b)

] . (39b)

Performing the differentiation of (39b) with respect to r, we get

lim
r→b−

Un(r/b) = lim
r→b−

(n+ 1) b cos
[
(n+ 1) arccos(r/b)

]
r

. (40)

Thus, lim
r→b−

Un(r/b) = n+ 1. Accordingly, upon evaluating the

limit in (38), we obtain

K′
T =

8 a k T0

π b2
√
b

∞∑
n=0

(n+ 1) an. (41)

Remarkably, it has been found that the expressions for heat
flux intensity factors KT and K′

T are identical (KT = K′
T ).

Consequently, our focus in the following discussion will only
be on KT .

F. Dimensionless expressions

Dealing with dimensionless quantities is often convenient. We
can achieve this by introducing a variable change η = b ξ. Ad-
ditionally, the dimensionless parameters ā = a/b, h̄ = h/b,
ρ = r/b and ζ = z/b are also used. We then express the matrix
elements Amn and vector elements bm as Amn = Āmn/b

3 and
b̄m = bm/b2. Here, Āmn and b̄m are given by

Āmn =

∫ ∞

0

coth(h̄ η) N̄n(η) Ȳm(η) dη, (42a)

b̄m =

∫ ∞

0

csch(h̄ η) Ȳm(η) J1(ā η) dη, (42b)

where N̄n(η) = bNn(η/b) and Ȳm(η) = b Ym(η/b).

Therefore, by considering αn = an/b, the algebraic system (21)
can be transformed into the following dimensionless form

∞∑
n=0

Āmn αn = b̄m, m = 0, 1, 2, . . . (43)

As for the dimensionless temperature, fluxes, and heat flux
intensity factor, we define them as follows: T̄ = T/T0, q̄r =

b qr/(k T0), q̄z = b qz/(k T0), and K̄T =
√
bKT /(k T0). By using

these quantities and the previously introduced dimensionless
parameters, we can transform the expressions (22), (23), (27),
(30), (31) and (36) that represent the thermal fields and heat flux
intensity factor into their dimensionless forms.

The dimensionless expressions for temperature are obtained as
follows

T̄ (ρ, ζ)

= ā

{∫ ∞

0

csch(h̄ η) sinh((h̄− ζ) η) J0(ρ η) J1(ā η) dη

+
∞∑

n=0

αn

∫ ∞

0

csch(h̄ η) sinh(ζ η) N̄n(η) J0(ρ η) dη

}
,

(44a)

T̄ (ρ, h̄) =
4 ā

√
1− ρ2 H(1− ρ)

π ρ

∞∑
n=0

αn U2n+1(ρ). (44b)

The dimensionless expressions for the heat flux in the radial
direction can be expressed as

q̄r(ρ, ζ)

= ā

{∫ ∞

0

η csch(h̄ η) sinh((h̄− ζ) η) J1(ā η) J1(ρ η) dη

+

∞∑
n=0

αn

∫ ∞

0

η csch(h̄ η) sinh(ζ η) N̄n(η) J1(ρ η) dη

}
,

(45a)

q̄r(ρ, 0) = δ(ρ− ā), (45b)

q̄r(ρ, h̄) = − 4 ā H(1− ρ)

π ρ2
√

1− ρ2

∞∑
n=0

αn

{
2 (n+ 1) ρ U2n(ρ)

−
[
(2n+ 1) ρ2 + 1

]
U2n+1(ρ)

}
.

(45c)

Regarding the heat flux in the axial direction, the dimensionless
expressions are given by

q̄z(ρ, ζ)

= ā

{∫ ∞

0

η csch(h̄ η) cosh((h̄− ζ) η) J0(ρ η) J1(ā η) dη

−
∞∑

n=0

αn

∫ ∞

0

η csch(h̄ η) cosh(ζ η) N̄n(η) J0(ρ η) dη

}
,

(46a)

q̄z(ρ, 0) = ā

{∫ ∞

0

η
[
coth(h̄ η)− 1

]
J0(ρ η) J1(ā η) dη

− 1

π ā

E

(
2
√
ā ρ

ρ+ ā

)
ρ− ā

−
K

(
2
√
ā ρ

ρ+ ā

)
ρ+ ā


−

∞∑
n=0

αn

∫ ∞

0

η csch(h̄ η) N̄n(η) J0(ρ η) dη

}
,

(46b)

q̄z(ρ, h̄) = ā H(ρ− 1)

×
{∫ ∞

0

η csch(h̄ η) J0(ρ η) J1(ā η) dη −
∞∑

n=0

αn

×
[ ∫ ∞

0

(
η coth(h̄ η) N̄n(η)+

8 (n+1) cos(η)

π

)
×J0(ρ η) dη − 8 (n+ 1)

π
√

ρ2 − 1

]}
.

(46c)

Finally, the expression for the dimensionless heat flux intensity
factor can be written as

K̄T =
8 ā

π

∞∑
n=0

(n+ 1)αn. (47)

IV. NUMERICAL RESULTS AND DISCUSSION

In the preceding section, we derived explicit expressions for the
temperature, heat fluxes, and heat flux intensity factor, all of
which are presented in dimensionless form in (44)-(47). In this
section, we perform numerical calculations using these expres-
sions to illustrate the thermal fields and analyze the influence of
various parameters on these quantities. Furthermore, to validate
the obtained results, a numerical simulation is conducted using
finite element method (ANSYS software).

A. Numerical scheme

The thermal field variables and heat flux intensity factor are ex-
pressed in terms of the coefficients αn, which are the solution of
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the algebraic system (43). Therefore, the calculation of these co-
efficients is crucial for further analysis of the involved physical
quantities. To achieve this, we solve the algebraic system (43)
using the truncation method [39, 40]. This approach involves
selecting an appropriate finite number of equations from the sys-
tem to solve, enabling us to obtain solutions for the coefficients
αn.

However, the analytical computation of the coefficient matrix
elements Āmn and vector elements b̄m poses a significant chal-
lenge due to their representation as infinite integrals (42a) and
(42b), respectively. Therefore, we resort to numerical integra-
tion procedures. In this regard, we integrate Āmn in two steps:
from 0 to a sufficiently large number, denoted as η0, and from
η0 to infinity. Formally,

Āmn =

∫ η0

0

coth(h̄ η) N̄n(η) Ȳm(η) dη +A′
mn, (48)

where A′
mn corresponds to the integral from η0 to infinity. The

evaluation of the first integral can be accomplished by utiliz-
ing an appropriate numerical method. The value of η0 must
be chosen sufficiently large to ensure that the term coth(h̄ η)

approaches one. This allows us to approximate the improper
integral A′

mn as

A′
mn ≃

∫ ∞

η0

N̄n(η) Ȳm(η) dη. (49)

Moreover, η0 should also be sufficiently large to enable the
effective use of the asymptotic expansion of Bessel functions.
For example, a value of η0 = 5000 may be used. Consequently,
A′

mn can be evaluated through the expression

A′
mn ≃ 128 (−1)m (m+1) (n+1)

π2

[
cos(η0)

2

η0
+ si(2 η0)

]
, (50)

which is derived in Appendix A.C. In the above relation, si is
the sine integral function defined by [27, Eq. (8.230 1)]

si(x) = −
∫ ∞

x

sin t

t
dt. (51)

Regarding the infinite integral b̄m, it is worth noting that the
term csch(h̄ η) rapidly decreases and approaches zero as η tends
to infinity. Furthermore, based on the asymptotic expressions
of Bessel’s functions and Ȳm(η) given by (A.18) and (A.21b),
respectively, we can determine that b̄m is a convergent integral.
Consequently, we can evaluate it using an appropriate numerical
method as

b̄m ≃
∫ η0

0

csch(h̄ η) Ȳm(η) J1(ā η) dη. (52)

By employing the aforementioned approximation scheme, we
can effectively solve an appropriately truncated system of the
algebraic system (43) with adequate accuracy. The first ten
terms of αn are presented in Tables I and II for various values
of ā and h̄. One can observe that the coefficients exhibit rapid
convergence. However, as ā or h̄ decrease, the convergence
becomes slower. Nonetheless, extensive testing has shown that
considering less than ten terms of the coefficients in the calcula-
tions is generally sufficient for generating convergent results in
most practical cases, as shown in Table III.

Table. I
FIRST TENTH TERMS OF THE COEFFICIENTS αn FOR VARIOUS

VALUES OF ā WITH h̄ = 0.75

h̄ = 0.75

n ā = 0.25 ā = 0.5 ā = 1 ā = 2

0

1

2

3

4

5

6

7

8

9

0.069516

−0.022279

0.006137

−0.001516

0.000343

−0.000071

0.000013

−0.000002

0.000000

0.000000

0.133246

−0.033799

0.006334

−0.000792

0.000022

0.000020

−0.000006

0.000001

0.000000

0.000000

0.202032

−0.017122

−0.000630

0.000215

0.000005

−0.000004

0.000000

0.000000

0.000000

0.000000

0.142320

0.001066

−0.000118

−0.000001

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

Table. II
FIRST TENTH TERMS OF THE COEFFICIENTS αn FOR VARIOUS

VALUES OF h̄ WITH ā = 1.5

ā = 1.5

n h̄ = 0.25 h̄ = 0.5 h̄ = 1 h̄ = 2

0

1

2

3

4

5

6

7

8

9

0.324641

0.034327

0.000721

−0.000479

−0.000037

0.000010

0.000001

0.000000

0.000000

0.000000

0.242438

0.005770

−0.000752

−0.000058

−0.000002

0.000000

0.000000

0.000000

0.000000

0.000000

0.134396

−0.002950

−0.000214

0.000004

0.000001

0.000000

0.000000

0.000000

0.000000

0.000000

0.046306

−0.001347

0.000015

0.000001

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

Table. III
EXAMPLES OF NUMERICAL VALUES FOR DIMENSIONLESS
THERMAL FIELDS AGAINST THE NUMBER OF TERMS USED IN

THE CALCULATION.

a h ρ ζ m, n T (ρ, ζ) qr(ρ, ζ) qz(ρ, ζ)

0.25 0.5 0.5 0.25

2

4

6

8

10

15

0.059183

0.063323

0.063718

0.063754

0.063753

0.063753

0.267378

0.297678

0.299169

0.299283

0.299281

0.299281

−0.078051

−0.090873

−0.091553

−0.091693

−0.091691

−0.091691

0.5 1.5 1 0.75

2

4

6

8

10

15

0.044434

0.044479

0.044480

0.044480

0.044480

0.044480

0.098666

0.098762

0.098763

0.098763

0.098763

0.098763

0.028904

0.028855

0.028855

0.028855

0.028855

0.028855

1 1.25 0.5 1

2

4

6

8

10

15

0.259398

0.259694

0.259692

0.259692

0.259692

0.259692

0.219466

0.220796

0.220791

0.220791

0.220791

0.220791

0.217509

0.217074

0.217074

0.217074

0.217074

0.217074

2 0.75 1.5 0.25

2

4

6

8

10

15

0.631150

0.631147

0.631147

0.631147

0.631147

0.631147

0.217688

0.217675

0.217675

0.217675

0.217675

0.217675

1.395149

1.395158

1.395158

1.395158

1.395158

1.395158
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Once the coefficients αn are determined, the thermal fields and
heat flux intensity factor can be obtained from (44)-(47). It is
important to note that the asymptotic expansions of Bessel’s
functions and N̄n(η) (Eqs. A.18 and A.21a) provided in Ap-
pendix A, combined with the decreasing nature of the weight
functions, guarantee the convergence of the integrals involved in
the expressions for temperature and heat fluxes. Consequently,
these integrals can be evaluated with a suitable level of accuracy
using an appropriate numerical method.

B. Finite element modeling and comparison with the present
results

For the sake of validating the solution obtained by the present
method, we carry out a numerical simulation of the temperature
field using ANSYS Workbench software. Figure 3 displays the
finite element model along with the imposed boundary condi-
tions. Here, we adopt the dimensionless forms of the coordi-
nates, geometric parameters, temperature and heat fluxes, as
established in subsection II.F. Due to the axisymmetric property
of the problem, we only consider its projection onto the (ρ, ζ)

plane.

ā = 1
h̄ = 1

ρ

ζ

o
T̄ = 1 T̄ = 0

T̄ = 0q̄z = 0

1

Length = 50

T̄ = 0

Fig. 3: Geometry and boundary conditions of the finite element
model.

The geometric parameters are taken as ā = h̄ = 1, while the
length extends to 50. This specific length value is intention-
ally chosen to ensure that the computational results remain
unaffected by this factor. Concerning boundary conditions, we
impose the conditions prescribed in section II. Additionally,
the temperatures on the boundary ρ = 50 are set to zero, and
the software automatically applies boundary conditions on the
symmetry axis ρ = 0.

   

      

 
 

 

Fig. 4: Typical finite element mesh used for the analysis of heat
conduction in a layer.

For the sake of discretization, the geometry is divided into
quadrilateral elements, with a typical length of 0.04. Further-
more, triangular singular elements are used, and the mesh has
been refined near points where ρ = 1, ζ = 0 and ζ = 1 to ac-
curately model temperature gradients and heat fluxes in these
critical regions. A visual representation of a typical mesh used
in the model is depicted in Fig. 4.

Figure 5 compares the radial distribution of the dimensionless
temperature T̄ at different ζ-plane (ζ = 0.25, 0.5, 0.75, and 1).
As shown, the analytical and numerical results are in good
agreement, thereby validating the present analysis.

Anal.    FEM

Fig. 5: Radial distribution of the dimensionless temperature
T̄ for various values of ζ with ā = h̄ = 1, as obtained by the
present analytical approach and the numerical simulation.

C. Thermal fields

The expressions (44)-(46) enable us to calculate the temperature
and heat flux fields within the region 0 ≤ ζ ≤ h̄ of the medium.
Furthermore, the symmetry characteristics with respect to the
crack plane ζ = 0, which are inherent in the studied problems,
require:

• For the first problem, which involves a penny-shaped crack
as shown in Fig. 1(a), T̄ and q̄r should exhibit anti-symmetry,
while q̄z should be symmetric.

• In the case of an external crack, representing the second prob-
lem as depicted in Fig. 1(b), T̄ and q̄r should display symme-
try, while q̄z should exhibit anti-symmetry.

As a result, we can determine the thermal fields in the entire
physical domain. Figures 6 and 7 show these fields around the
crack region in both examined problems. The results are plotted
for the case of ā = 2 and h̄ = 1.5.

In view of the symmetry characteristics of the studied problems,
our discussion mainly focuses on the half-layer where 0 ≤ ζ ≤ h̄.
From Figs. 6(a) and 7(a), it can be seen that the temperature is
highest on the heated boundary area (ζ̄ = 0 and 0 ≤ ρ ≤ ā) and
decreases as ρ or ζ increases. On the other hand, the temperature
remains consistently at zero in the regions ζ = 0, ρ > ā and
ζ = h̄, ρ > 1, in accordance with the boundary conditions (2a)
and (2c).
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(a) T̄ (ρ, ζ)

(b) q̄r(ρ, ζ)

(c) q̄z(ρ, ζ)

Fig. 6: Contour plots of the thermal fields around the crack
region with ā = 2 and h̄ = 1.5 for the first problem (involving a
penny-shaped crack). (a) T̄ (ρ, ζ); (b) q̄r(ρ, ζ); (c) q̄z(ρ, ζ).

In the first problem, where the medium contains a penny-shaped
crack, a temperature discontinuity is evident across the crack,
as illustrated in Fig. 6(a). The temperature distributions on
the lower and upper crack surfaces have equal magnitudes but
opposite signs. This discontinuity reflects the heat transfer char-
acteristics imposed by the boundary conditions and the nature
of the crack. In contrast, in the second problem (the case of
an external crack), the temperature in the region ζ = h̄, ρ < 1

remains continuous, as depicted in Fig. 7(a).

Figures 6(b), (c), 7(b) and (c) indicate that both heat fluxes are
concentrated in the vicinity of the region ζ = 0, ρ = ā and near
the crack tip (ζ = h̄, ρ = 1). They vary considerably around
these areas and vanish as ρ becomes larger. Additionally, the
heat flux in the radial direction vanishes in the median plane
(ζ = h̄) for ρ > 1, as revealed in Figs. 6(b) and 7(b). These
figures also show that q̄r vanishes on the axis ρ = 0, which is
consistent with the axisymmetric nature of the present problems.

(a) T̄ (ρ, ζ)

(b) q̄r(ρ, ζ)

(c) q̄z(ρ, ζ)

Fig. 7: Contour plots of the thermal fields around the crack
region with ā = 2 and h̄ = 1.5 for the second problem (involving
an external crack). (a) T̄ (ρ, ζ); (b) q̄r(ρ, ζ); (c) q̄z(ρ, ζ).

Now, we investigate the effect of the dimensionless parameters
ā and h̄ on the thermal fields along the crack plane. Considering
the previously mentioned symmetry characteristics, we focus
on the results related to the lower crack plane ζ = h̄−. The
variations of the dimensionless temperature T̄ at this plane, as a
function of the normalized radial coordinate ρ, are depicted in
Figs. 8(a) and (b) for different values of ā and h̄, respectively.

It can be observed that, for a given ā and h̄, the temperature
reaches its maximum value on the symmetry axis (ρ = 0) and
decreases as ρ increases along the circular area of radius 1, until
it vanishes at the crack tip (ρ = 1). On the remaining part of
the crack plane (ρ > 1), the temperature remains consistently
zero, conforming to the boundary condition (2c), which is also
indicated in Figs. 6(a) and 7(a). Figure 8 also shows that, for a
fixed value of h̄, a significant temperature variation corresponds
to a larger value of ā. Conversely, for a specific value of ā,
notable temperature variation aligns with a smaller value of h̄.
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(a) (b)

Fig. 8: Radial distribution of T̄ on the lower crack plane (ζ = h̄−) for: (a) various values of ā with h̄ = 1.5; (b) different values of
h̄ with ā = 1.5.

(a) (b)

Fig. 9: Radial distribution of q̄r on the lower crack plane (ζ = h̄−) for: (a) various values of ā with h̄ = 1.5; (b) different values of
h̄ with ā = 1.5.

(a) (b)

Fig. 10: Radial distribution of q̄z on the lower crack plane (ζ = h̄−) for: (a) various values of ā with h̄ = 1.5; (b) different values
of h̄ with ā = 1.5.
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(a)

(b)

Fig. 11: Radial distribution of q̄z on the external surface ζ = 0

for: (a) various values of ā with h̄ = 1.5; (b) different values of
h̄ with ā = 1.5.

Regarding the heat fluxes, Figs. 9 and 10 illustrate the distribu-
tion of q̄r and q̄z on the lower crack plane (ζ = h̄−), respectively.
The results are plotted for various values of the dimensionless
parameters ā and h̄. From these figures, it is evident that both
heat fluxes exhibit singular behavior near the crack tip. Specifi-
cally, the heat flux in the radial direction shows singularity in
the vicinity ρ → 1−, whereas the heat flux in the axial direction
displays singularity in the vicinity ρ → 1+.

Furthermore, as depicted in Fig. 9, the heat flux in the radial di-
rection q̄r vanishes at the center (ρ = 0), increases as ρ increases
within the circular area ρ < 1, and exhibits significant variations
in the vicinity of the crack tip (ρ → 1−). Along the remaining
part of the crack plane (i.e., ρ > 1), q̄r consistently remains zero,
which is also shown in Figs. 6(b) and 7(b).

As dictated by the boundary condition (2b), the heat flux in the
axial direction should vanish within the circular region ρ < 1.
This condition is indicated in Fig. 10. It is also seen from
this figure that q̄z decays rapidly with increasing ρ (ρ > 1),
eventually approaching zero as ρ becomes larger.

Moreover, Figs. 9(a) and 10(a) indicate that a larger radius ā of

the heated area results in larger heat fluxes on the lower crack
plane. Similarly, from Figs. 9(b) and 10(b), it can be observed
that as the crack is closer to the partially heated external surface
(ζ = 0), the heat fluxes on the lower crack plane are larger in
magnitude.

The analysis of q̄z variation at the plane ζ = 0 is also of particular
interest. The profiles of q̄z along the radial direction at the
external surface (ζ = 0) are presented in Figs. 11(a) and (b) for
different values of ā and h̄, respectively. It is clear that q̄z is
singular at ρ = ā and varies significantly in its vicinity (ρ → ā±).

Notably, within the circular area of radius ā, q̄z is positive, while
it becomes negative on the remaining part of the external surface
(ρ > ā). Additionally, the magnitude of q̄z increases as ρ varies
from 0 to ā. This trend also holds true for ρ > ā (where q̄z
is negative), and it eventually tends toward zero as ρ becomes
larger. Further analysis of both figures reveals that the profile
of q̄z varies across different combinations of ā and h̄. This
difference is less noticeable when varying h̄, especially when ρ

is greater than ā, as shown in Fig. 11(b).

D. Heat flux intensity factor

In this subsection, we examine how the dimensionless parame-
ters ā and h̄ influence the normalized heat flux intensity factor
K̄T . To this end, we display in Fig. 12 a contour plot of K̄T as a
function of both ā and h̄. The plot is presented on a log-linear
scale to better highlight the K̄T variation. It is noteworthy to
see from this figure that, as ā increases up to 0.6, the magnitude
of K̄T consistently falls within the range of 0.1 to 0.2. This ob-
servation remains consistent when ā exceeds 0.6, and h̄ ranges
from 3 to 5.

Additionally, for a fixed value of h̄, the magnitude of the heat
flux intensity factor rapidly increases as ā rises from 0.6 to
1.2, then tends to stabilize with further increases in the value
of ā. On the other hand, when ā exceeds 1.2, K̄T decreases
monotonically as h̄ increases. In other words, the closer the
crack is to the external surfaces, the larger the magnitude of the
heat flux intensity factor.

Fig. 12: Contour plot of the normalized heat flux intensity factor
K̄T versus ā and h̄ presented on a semi-logarithmic scale.
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V. CONCLUSION

In this study, we investigated a heat conduction problem in a
layer with prescribed temperature conditions that also containing
a circular crack, either internal or external. Closed-form expres-
sions were derived for various physical quantities, including
temperature, heat fluxes, and heat flux intensity factor. Numer-
ical results were presented to gain insight into the behavior of
these quantities and their dependence on various parameters,
such as the surface radius of the applied temperatures and the
layer thickness.

The proposed method has demonstrated its effectiveness in solv-
ing the current heat conduction problem. Furthermore, its broad
applicability extends beyond this specific case, allowing it to
handle a wide range of mixed boundary value problems in the
field of heat conduction, as well as in other scientific domains
such as thermo-elasticity [15, 16], electrostatics [41, 42] and
fluid mechanics [43, 44].

Our results may serve as valuable analytical tools for validating
solutions obtained through numerical approaches. Furthermore,
they can be utilized to derive thermal displacements and stresses
for the corresponding thermoelastic problems, which will be
addressed in future research endeavors.

APPENDICES

A EVALUATION OF THE INTEGRALS

This appendix is dedicated to providing comprehensive details
regarding the derivation of expressions for some integrals in-
volved in this study.

A.
∫ ∞

0

ξ coth(h ξ) J0(r ξ) J1(a ξ) dξ

Knowing that lim
ξ→∞

coth(h ξ) = 1, the following integral can be

rewritten as∫ ∞

0

ξ coth(h ξ) J0(r ξ) J1(a ξ) dξ

=

∫ ∞

0

ξ
[
coth(h ξ)− 1

]
J0(r ξ) J1(a ξ) dξ

+

∫ ∞

0

ξ J0(r ξ) J1(a ξ) dξ.

(A.1)

Making use of the identity ξ J1(ξ) = −∂J0(a ξ)/∂a and chang-
ing the order of integration and derivation, we get∫ ∞

0

ξ J0(r ξ) J1(a ξ) dξ = − ∂

∂a

∫ ∞

0

J0(a ξ) J0(r ξ) dξ. (A.2)

By virtue of [27, Eq. (6.576 2)], the integral on the right hand
side of (A.2) can be evaluated as

∫ ∞

0

J0(a ξ) J0(r ξ) dξ =

F

(
1

2
,
1

2
; 1;

4 r a

(r + a)2

)
r + a

, (A.3)

where F stands for the Gauss hypergeometric function defined
by the following power series [27, Eq. (9.14)]

F
(
α, β; γ; x

)
=

∞∑
n=0

(α)n (β)n
(γ)n

xn

n!
, (A.4)

with (α)n = Γ(α+ n)/Γ(α), and |x| < 1. We denote by Γ the

gamma function defined by Γ(x) =

∫ ∞

0

tx−1 e−t dt, for x > 0.

In addition, from [27, Eq. (8.113 1)], we have

F

(
1

2
,
1

2
; 1;

4 r a

(r + a)2

)
=

2

π
K

(
2
√
r a

r + a

)
. (A.5)

We insert (A.5) into (A.3) and proceed with the differentiation

with respect to a, using the formula dK(x)

dx
=

E(x)

x (1− x2)
−K(x)

x
[27, Eq. (8.123 2)]. The resulting equation is then introduced
into (A.1), and hence, we obtain∫ ∞

0

ξ coth(h ξ) J0(r ξ) J1(a ξ) dξ

=

∫ ∞

0

ξ
[
coth(h ξ)− 1

]
J0(r ξ) J1(a ξ) dξ

− 1

π a

E

(
2
√
a r

r + a

)
r − a

−
K

(
2
√
a r

r + a

)
r + a

 .

(A.6)

Regarding the evaluation of the integral on the right-hand side
of (A.6), it is worth noting that it converges rapidly. Therefore,
it can be truncated to an integral from 0 to a sufficiently large
number and subsequently evaluated numerically using a suitable
method.

B.
∫ ∞

0

ξ Nn(ξ) J1(r ξ) dξ

We use the relation ξ J1(ξ) = −∂J0(r ξ)/∂r to express the con-
sidered integral as∫ ∞

0

ξ Nn(ξ) J1(r ξ) dξ = − ∂

∂r

∫ ∞

0

Nn(ξ) J0(r ξ) dξ. (A.7)

Then, with the help of (15), we get

∂

∂r

∫ ∞

0

Nn(ξ) J0(r ξ) dξ

=
4

π b2
∂

∂r

[√
b2 − r2

r
H(b− r)U2n+1(r/b)

]
(A.8a)

=
4

π b2

[√
b2 − r2

r
U2n+1(r/b)

∂

∂r
H(b− r)

+H(b− r)
∂

∂r

(√
b2 − r2

r
U2n+1(r/b)

)]
.

(A.8b)

Knowing that ∂H(b− r)/∂r = δ(b− r) = 0 for r ̸= b, and

lim
r→b−

[√
b2 − r2

r
δ(b− r)U2n+1(r/b)

]
= 0, (A.9)

we determine that the first term involved in (A.8b) vanishes.

On the other hand, by employing the variable change ρ = r/b,
the remaining partial derivative involved in (A.8b) can be trans-
formed into the following form

∂

∂r

[√
b2−r2

r
U2n+1(r/b)

]
=

∂

b ∂ρ

[√
1−ρ2

ρ
U2n+1(ρ)

]
. (A.10)

Before proceeding with differentiation, let us introduce the dif-
ferentiation formula for the Chebyshev polynomials Un as fol-
lows

d

dx
Un(x) =

(n+ 1)Tn+1(x)− xUn(x)

x2 − 1
, (A.11)
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where Tn represents Chebyshev’s polynomials of the first kind
of degree n, defined by [27, Eq. (8.940 1)] as Tn(x) =

cos(n arccosx). Here, it is worth mentioning that (A.11) is
obtained by differentiating the polynomials in their trigonomet-
ric forms. Considering (A.11), we perform the differentiation
on the right-hand side of (A.10). This operation results in

∂

∂ρ

[√
1− ρ2

ρ
U2n+1(ρ)

]
= −2 (n+ 1) ρ T2n+2(ρ) + (1− ρ2)U2n+1(ρ)

ρ2
√

1− ρ2
.

(A.12)

By making use of the following recursion formulas [27, Eq.
(8.941 3 and 2)]

Tn(x) = Un(x)− xUn−1(x), (A.13a)
Un+1(x)− 2xUn(x) + Un−1(x) = 0, (A.13b)

(A.12) can be expressed in terms of Chebyshev’s polynomials
of the second kind only, and further can be simplified to

∂

∂ρ

[√
1− ρ2

ρ
U2n+1(ρ)

]
=

2 (n+ 1) ρU2n(ρ)−
[
(2n+ 1) ρ2 + 1

]
U2n+1(ρ)

ρ2
√

1− ρ2
.

(A.14)

Hence, by inserting (A.14) into (A.10) and remembering that
ρ = r/b, we find that

∂

∂r

[√
b2 − r2

r
U2n+1(r/b)

]
=

1

r2
√
b2 − r2

{
2 (n+ 1) b r U2n(r/b)

−
[
(2n+ 1) r2 + b2

]
U2n+1(r/b)

}
.

(A.15)

Via substitution of (A.15) into (A.7), one finally obtains the fol-
lowing analytical expression for the integral under consideration∫ ∞

0

ξ Nn(ξ) J1(r ξ) dξ

= − 4H(b− r)

π b2 r2
√
b2 − r2

{
2 (n+ 1) b r U2n(r/b)

−
[
(2n+ 1) r2 + b2

]
U2n+1(r/b)

}
.

(A.16)

C.
∫ ∞

η0

N̄n(η) Ȳm(η) dη

Upon introducing the variable change η = b ξ, the functions M̄n,
X̄m, N̄n, and Ȳm are expressed as follows

M̄n(η) = Mn(η/b) = Jn+1/2 (η/2) J−(n+1/2)(η/2), (A.17a)

N̄n(η) = η
[
M̄n(η)− M̄n+1(η)

]
, (A.17b)

X̄m(η) = Xm(η/b) = J2
m (η/2) , (A.17c)

Ȳm(η) = η
[
X̄m(η)− X̄m+2(η)

]
. (A.17d)

On the other hand, the asymptotic expansion of the Bessel func-
tion Jν for large values of the argument x reads [27, Eq. (8.451
1)]

Jν(x)=

√
2

π x

[
cos

(
x− (2 ν + 1)

π

4

)
− 4 ν2 − 1

8x

× sin
(
x− (2 ν + 1)

π

4

)
+O

(
1

x2

)]
.

(A.18)

We then use (A.18) along with the trigonometric identities below

cos(x) cos(y) = [cos(x+ y) + cos(x− y)] /2,

cos(x) sin(y) = [sin(x+ y)− sin(x− y)] /2,

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

sin(x+ y) = cos(x) sin(y) + sin(x) cos(y),

(A.19)

to get the following asymptotic expansions of M̄n and X̄m

M̄n(η) =
2

π η

[
sin(η)+

2n (n+1) cos(η)

η

]
+O

(
1

η3

)
, (A.20a)

X̄m(η) =
2

π η

[
1 + (−1)m sin(η) + (−1)m

×
(
4m2 − 1

) cos(η)

2 η

]
+O

(
1

η3

)
.

(A.20b)

Substituting (A.20a) and (A.20b) into (A.17b) and (A.17d),
respectively, with some algebraic manipulations, we obtain

N̄n(η) = −8 (n+ 1) cos(η)

π η
+O

(
1

η2

)
, (A.21a)

Ȳm(η) = −16 (−1)m (m+ 1) cos(η)

π η
+O

(
1

η2

)
. (A.21b)

By virtue of (A.21), the following integral can be approximated
as ∫ ∞

η0

N̄n(η) Ȳm(η) dη ≃ 128 (−1)m (m+ 1) (n+ 1)

π2

×
∫ ∞

η0

cos(η)2

η2
dη.

(A.22)

We shall proceed to perform integration by parts on the right-

hand side of (A.22). Given that cos(η)2

η

∣∣∣∣∞
η0

= −cos(η0)
2

η0
and

the identity 2 cosx sinx = sin 2x, one gets∫ ∞

η0

cos(η)2

η2
dη =

cos(η0)
2

η0
+ si(2 η0), (A.23)

where si is the sine integral function defined previously by (51).
Finally, inserting (A.23) into (A.22), yields∫ ∞

η0

N̄n(η) Ȳm(η) dη ≃ 128 (−1)m (m+ 1) (n+ 1)

π2

×
[
cos(η0)

2

η0
+ si(2 η0)

]
.

(A.24)

D.
∫ ∞

0

ξ coth(h ξ)Nn(ξ) J0(r ξ) dξ

From (A.21a), we have

Nn(ξ) =
N̄n(b ξ)

b
∼ −8 (n+ 1) cos(b ξ)

π b2 ξ
, as ξ → ∞. (A.25)

Knowing that lim
ξ→∞

coth(h ξ) = 1, we get

∫ ∞

0

ξ coth(h ξ)Nn(ξ) J0(r ξ) dξ

=

∫ ∞

0

[
ξ coth(h ξ)Nn(ξ) +

8 (n+ 1) cos(b ξ)

π b2

]
× J0(r ξ) dξ −

8 (n+ 1)

π b2

∫ ∞

0

cos(b ξ) J0(r ξ) dξ.

(A.26)
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Recalling the relation [27, Eq. (6.671 2)], yields

∫ ∞

0

cos(b ξ) J0(r ξ) dξ =
1√

r2 − b2
, r > b. (A.27)

Finally, after substitution of (A.27) into (A.26), the resulting
expression is

∫ ∞

0

ξ coth(h ξ)Nn(ξ) J0(r ξ) dξ

=

∫ ∞

0

[
ξ coth(h ξ)Nn(ξ) +

8 (n+ 1) cos(b ξ)

π b2

]
× J0(r ξ) dξ −

8 (n+ 1)

π b2
√
r2 − b2

.

(A.28)

B EXACT SOLUTION FOR THE HALF-SPACE CASE (h → ∞)

In this appendix, we present an exact solution for a steady-state
heat conduction problem within a semi-infinite medium. This
medium is exposed to a constant temperature over a circular
region on its external surface. The corresponding governing
equation is given by (1), and it is subject to the boundary con-
dition (2a). In addition, the regularity condition requires the
thermal fields to vanish at infinity (

√
r2 + z2 → ∞).

By following the same solution procedure presented in the sub-
section III.A, one obtains

TH(ξ, z) =
e−z ξ A(ξ)

ξ
, (B.1)

where A denotes an unknown function. Then, Applying the
boundary condition (2a) and Hankel transform theorem, we
obtain

A(ξ) = aT0 J1(a ξ). (B.2)

Substituting (B.2) into (B.1) and performing the Hankel inver-
sion transform given by (3b) yields the explicit formula below

T = aT0

∫ ∞

0

e−z ξ J0(r ξ) J1(a ξ) dξ. (B.3)

Subsequently, the following expressions for heat fluxes are de-
rived

qr = a k T0

∫ ∞

0

ξ e−z ξ J1(a ξ) J1(r ξ) dξ, (B.4a)

qz = a k T0

∫ ∞

0

ξ e−z ξ J0(r ξ) J1(a ξ) dξ. (B.4b)
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