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Stochastic Analysis to Predict Reliability Index of
a Tall Building Structure

Badreddine Chemali and Boualem Tiliouine

Abstract— This article presents a stochastic analysis to assess the probability of failure and reliability of tall building
structures with random variables under stochastic seismic excitation, using the conventional Monte Carlo Simulation
(MCS) method. Uncertainties in seismic loading, structural geometry, and material characteristics are incorporated t in
the study. Furthermore, the sensitivity of structural reliability is examined in relation to different performance variable
limit states. The numerical results demonstrate that structural reliability is significantly influenced by the variability of
all random variables but more importantly by seismic loading randomness. It’s shown that, when the variability of the
random parameters is higher, the effects on structural reliability are more noticeable. In addition, preliminary
sensitivity analysis based on the First Order Reliability Method (FORM) that gives information on the sensitivity of the
randomness of the inputs parameters, shows that the 11 stochastic input parameters seismic probabilistic problem can
be effectively reduced utilizing only 4 random variables, namely: the Peak Ground Acceleration, concrete elastic
modulus, core inertia and reinforced concrete density.
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NOMENCLATURE The evolution of computational power has enabled the explicit
incorporation of uncertainty quantification in structural
analysis, facilitating deeper understanding of the behavior of

PGA Peak Ground Acceleration
MCS Monte Carlo Simulation. probabilistic structures. (e.g. [2-5])
FORM First Order Reliability Method. ) ) ) ) )
X Mean value of random variable This study investigates the effectlyeness of conventional
.- . Monte Carlo Simulation (MCS) in assessing structural
P Probability of failure performance and system reliability for high-rise buildings.
R — Reliability. Failure is defined as the exceedance of the building's lateral
g(X,X) Performance function. top displacement beyond code-specified limits (e.g., H/500
Cumulative ~ Standard Normal Distribution as per IBC design code [6]). Stochastic analyses are
© Function. conducted on a representative high-rise buildings under
BrL Hasofer-Lind Reliability index seismic loading, with the following probabilistic modeling:
A sensitivity factor e Geometrical parameters as independent normal
RPA 2024  Algerian Earthquake Regulation random variables
Zone acceleration coefficient e Structural materials and loads modeled as

correction factor of damping lognormally distributed

A
n
& percentage of critical damping
y allowable maximum displacement The sensitivity of structural reliability to performance
criteria is evaluated by varying the limit-state thresholds.
;) Furthermore, the capabilities and limitations of the MCS
E approach are critically examined. In addition, preliminary
sensitivity analysis based on FORM is conducted to identify
L. INTRODUCTION critical input parameters, followed by interpretation of
practical engineering consequences.

Density
Inertia
elastic modulus

Uncertainties in the construction process may be categorized ) ) o )

into two primary types: natural variability and human-induced ~ The paper is .Organlzed. as _fOHOWS.: Reliability .an.alys1s
factors (e.g. [1]). Natural uncertainties stem from methods are briefly described in Section 2. A description of
unpredictable environmental loads (wind, seismic, snow, live ~ Tall Building Structure Example is provided Section 3. The
loads) and material behavior variations, while human-induced overall results of stochastic analyses to predict reliability

uncertainties arise from design approximations, computational ~ index of a tall building structure with uncertain parameters
errors. ete under random seismic loading are presented in Section 4.
, etc.

Finally, the study concludes with a synthesis of key findings

and their implications for structural reliability analysis.
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In the conventional probabilistic framework, the uncertainties
are modeled as random parameters with certain distribution
characteristics. Let denote X the vector of uncertain input
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input parameter (mean values of uncertain variables); the
probability of failure Pf can be given as:
(M

Pr=PlgXX)<0]=[.. [pr(xTdx|.d%y

2(X,X)<0

where g(X,X) =7 - »(X,X)is the limit state function and
2(X,X)<0 expresses the failure event, hence the reliability
can be defined as g(X,X)>0; X = [X,,....X,,]" represents the

realization of X, p;(x,X)represents the joint probability

density function of the system parameters, typically estimated
from empirical measurement data. The variable y denotes the
performance metric, while y corresponds to its critical

threshold (limit state).

For evaluating the probability of failure described in equation
1, various numerical methods are available for this purpose,
including Monte Carlo Simulation (e.g. [3,7]), First- and
Second-Order Reliability Methods (FORM/SORM) (e.g.[1]),
Point Estimate Methods (e.g. [8]) and Response Surface
Method (e.g. [9]).

A measure of the system reliability can be given by the
Reliability Index

p=a'(1-Pr) 2

where @' denotes the inverse standard normal cumulative
distribution function. The reliability R is computed by:

R=0(B) 3)

where @ represents the standard normal cumulative

distribution function
1.1 Monte Carlo Simulation technique

In stochastic assessment, the MCS method is habitually utilized
when the analytical solution is not possible and the failure
domain cannot be described by an analytical form. The Monte
Carlo Simulation (MCS) method is particularly indispensable
for complex problems involving numerous stochastic input
parameters, where conventional reliability analysis techniques
(e.g., FORM/SORM) prove inadequate. While MCS boasts a
straightforward mathematical formulation and unparalleled
versatility in handling problems of arbitrary complexity, its
principal drawback lies in the prohibitive computational cost
associated with traditional implementations—especially for
high-dimensional or low-probability failure events. One basic
advantage of the Monte Carlo Simulation over the other
reliability analysis methods for the particular type of problems
investigated in the present study is that its efficiency is not
affected by the additional complexities due to non-linear
analysis and the dynamic loads.

The computational cost of MCS grows proportionally when the
number of input parameters is large or/and the magnitude of P
is small, since both cases require a huge sample size. For this
reason, various sampling techniques, also called variance
reduction techniques, have been developed in order to improve
the computational efficiency of the method in order to
minimize the sample size and minimize the statistical
inaccuracy that is intrinsic to MCS approaches.

Expressing the limit state function as 2(X,X) <0, where
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X=[X,..X m]T is the vector of the random variables and

since MCS is based on the theory of large numbers (Noo), an
unbiased estimator of the probability of failure is given by

1 Y
Pr=— Zl (x7)
SN 2 )
J
in which, I(x; ) is an indicator for successful and unsuccessful
simulations defined as

1 if  g(X,X)>0

I(x; )= )

0 if g(X,X)<0

To estimate the failure probability Pr, the Monte Carlo method
generates N independent random realizations of the input
vector x, typically sampled from a uniform probability
distribution. For each realization x;, the limit-state
function g(x;) is evaluated. The failure probability is then
estimated as:

Pr=— (6)

where N represents the total number of Monte Carlo trials and
n denotes the count of simulations where the response exceeds
the deterministic case (evaluated at mean input values).
Traditional MCS is that in order to acquire an accurate
prediction of output first and second moments, the analysis
may require thousands of simulation runs, resulting in
computationally intensive and resource-demanding
calculations.

To enhance computational efficiency while preserving the
accuracy of Monte Carlo Simulation, several variance
reduction techniques have been developed (e.g. [1, 5, 10-11]).

III. DESCRIPTION OF TALL BUILDING STRUCTURE EXAMPLE

The case study examines a 35-story wall-frame structure
(height: 122.5 m) as shown in Figure 1 [12]. The lateral load-
resisting system for seismic actions along the long facade
consists of:

e  Six moment-resisting frames

e A central core (I =313 m?)

With a concrete elastic modulus (E) of 2x107 kN/m?, this
analysis aims to quantify the structural reliability under seismic
loading conditions compatible with the design spectra derived
from Algerian Earthquake Regulations [13] based on five
parameters: soil types S1 (rocky site), category 1A with an
Importance coefficient I =1.2. The structure is assumed to be
located in a moderate seismicity zone (zone II a) characterized
by an acceleration coefficient A = 0.25g (see Fig. 2). Table I
presents the moment of inertia values for frame columns and
girders, along with their statistical distributions, for the 35-
story case study building.

The seismic action is represented by the following Design
Response Spectrum as per the Algerian Earthquake
Regulations (RPA2024)

A: Zone acceleration coefficient

n: damping correction factor
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n= L (used when & is not equal to 5%)
V2+§

&: damping ratio

I: Importance coefficient

T1, T2: characteristic site periods corresponding to the
designated soil category

S: Site coefficient

A.I.S[l +%(2.577 - 1)] ..................... 0<T<T,
1
s, |4 JAR 7] T T<T<T,
e A.I.S(2.577)(T—T2j .......................... r<r<r, D
A.I.S(Z.Sn).[Tz—];] ................... T, <T<4s

The top displacement is selected as the governing parameter
for the performance function evaluation.

As quantified in Table I, the stochastic input variables
comprise:

e  Geometric parameters (e.g., member dimensions),

Material properties (e.g., concrete strength), and
Seismic loading, characterized through Peak
Ground Acceleration (PGA) variability

It should be noted that there is Additional stochastic
parameters significantly influence structural reliability
assessments, particularly live load uncertainties (e.g. [14]),
spatially correlated soil variations (e.g. [15]), and soil-
structure interaction complexities (e.g. [16]) etc...For the sake
of clarity we will focus on the variables mentioned above.

The corresponding limit state function takes the form:

g(l,;.1,,,...PGA) =y - y(z=H) (8)
The limit state compares the allowable top displacement ( )

against the response spectrum-derived demand. A parametric
reliability analysis was conducted by progressively

increasing y and computing the failure probability via MCS at
each step. The study employed 80,000 stochastic samples of
PGA and first-mode frequency, with their distributions shown
in Figures 3—4.

(@

(b)

Fig. 1. Plan (a) and 3-D view (b) of 35-story wall-frame
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Fig. 2. Elastic design response spectrum
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TABLE I
STRUCTURAL PARAMETERS AND STATISTICAL DATA FOR 35-STORY HIGH-RISE BUILDING
Parameters Stochastic variable Symbol Mean Coefficient of Distribution
variation
Core Icor 313 m*
Frame 1 Lic1 0.083 m*
lecl 0.050 m*
geometrical Ig1 0.011 m* 0.05 Normal
Frame 2 lic2 0.050 m*
lec2 0.034 m*
Ig2 0.005 m*
Elastic modulus E 2 x 107 KN/m? 0.15
material Damping Ratio & 7% 0.25 Lognormal
Density 2500 Kg/m® 0.20
Loading Peak Ground Acceleration PGA 0.25g 0.30 Lognormal
Where i: Interior, E: exterior, ¢c: column and g: girder.
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Fig. 3. Histogram for PGA generated with MCS technique.

IV. RESULTS AND DISCUSSION

A comprehensive evaluation of the proposed structural
reliability methodology's practical utility and performance
characteristics is presented in this section. The case study
structure enables an efficient numerical solution through
modal superposition techniques (e.g. [17]), significantly
enhancing the computational feasibility of Monte Carlo
Simulation (MCS) implementation.

Through combined seismic response spectrum analysis and
conventional Monte Carlo Simulation (MCS), the structural
reliability assessment yields:
e Probability of failure (Py) = 4.94 x 1072 (95.06%
reliability)
e Reliability index (B) = 1.651

These MCS-derived results are comprehensively summarized
in Table II.

TABLE 1.
RELIABILITY RESULTS of Tall Building Structures MCS

¥ (mm) P R (%) BMCS

10 100 0,000 8,112

50 99,931 0,069 -3,200

125 65,654 34,346 -0,403

143 49,698 50,302 0,008

145 48,008 51,992 0,050

175 26,634 73,366 0,624

245 (H/500) 4,938 95,062 1,651
300 1,163 98,837 2,269

350 0,308 99,692 2,739

400 0,082 99,918 3,147

For all the points Gy =51.8mm

c
10 12 14 16 18 20 22 2 26 28 30
Frequency (Hz)

Fig. 4. Histogram for frequency of first vibration mode of 35 story building,
generated with MCS

The probability distributions of both seismic intensity (PGA)
and structural reliability (performance variable CDF) are
shown in Figures 5 and 6 respectively, with their theoretical
PDF fits. These results were obtained through extensive
Monte Carlo simulation (N = 80,000 realizations).

Figure 7 presents the computed failure probabilities for the
case study structure as a function of the seismic load
Coefficient of Variation (COV). The probabilities correspond
to exceedance of the specified limit state for top displacement
(the selected performance variable). The results demonstrate a
clear positive correlation between failure probability and
increasing seismic load variability.

The First-Order Reliability Method (FORM) offers an
additional valuable feature through its directional cosines [1],
which quantify the sensitivity of the reliability index to each
random input variable. This sensitivity information is
particularly important for robust design optimization. A
preliminary FORM-based sensitivity analysis was performed,
revealing that variables with sensitivity measures below a
specified threshold o (Equation 9) could be treated as
deterministic. For this case study, o was set at 3%, allowing
identification of parameters with negligible influence on the
structural reliability. It should be mentioned that although the
First-Order Reliability Method (FORM) offers directional
cosines for sensitivity ranking, other reliable methods, like the
response surface method (e.g. [18]) or incomplete Monte
Carlo simulation (e.g. [19]), provide complementary benefits
for sensitivity analysis using reliability index.
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Fig. 5. Histograms for top displacement generated with MCS
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Fig. 6. Reliability of study tall building structure calculated by MCS

The reliability analysis was thus simplified from an 11-
dimensional random variable problem to a 4-variable
formulation, retaining only the most influential parameters:

1. Peak Ground Acceleration (PGA, o.=0.861)

2. Concrete elastic modulus (E, a = 0.291)

3. Core moment of inertia (I, a = 0.095)

4. Reinforced concrete density (p, o= 0.379)

Figure 8 demonstrates the characteristic convergence behavior
of the failure probability estimate as sample size increases.
While Monte Carlo Simulation (MCS) with N realizations
provides robust reliability estimates, its computational demand
becomes significant for systems with numerous degrees of
freedom (DOFs). For this case study, the analysis employed
8x10* simulations, determined through progressive assessment
of failure probability convergence versus sample size. More
complex scenarios may require substantially larger sample
sizes due to slower statistical convergence. In the current
implementation (11 random input variables and one output
performance function), the MCS required 9 minutes and 23
seconds of CPU time for 8 x10* samples.

V. CONCLUSIONS

The design of tall building structures is inherently influenced
by multiple uncertainty sources. However, through systematic
reliability-based approaches, structural safety can be enhanced
to meet or exceed codified reliability thresholds.

The analysis demonstrates that structural reliability is sensitive
to variability in all uncertain parameters, with particularly
strong dependence on loading randomness, density of
concrete, core inertia and concrete elastic modulus
uncertainty. Furthermore, the effects on structural reliability
have been shown to be more pronounced for higher variability
of the stochastic variables.
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Fig. 7 Structural Failure Probability as Function of Seismic Load COV

8
7
A
~5 e —o—
Sy
Loy 3
2
1
0
0 20000 40000 60000 80000 100000
Number of samples

Figure 8 Convergence of probability of failure with increasing sample size

Monte Carlo Simulation (MCS) for stochastic analysis of tall
buildings often requires substantial computational resources,
particularly for structures with numerous degrees of freedom
and multiple random variables. Implementing variance
reduction techniques combined with sensitivity analysis via
directional cosines can significantly improve computational
efficiency while maintaining accuracy - a crucial
consideration for robust design applications.
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