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Stochastic Analysis to Predict Reliability Index of 
a Tall Building Structure 

Badreddine Chemali and Boualem Tiliouine  

Abstract− This article presents a stochastic analysis to assess the probability of failure and reliability of tall building 

structures with random variables under stochastic seismic excitation, using the conventional Monte Carlo Simulation 

(MCS) method. Uncertainties in seismic loading, structural geometry, and material characteristics are incorporated t in 

the study. Furthermore, the sensitivity of structural reliability is examined in relation to different performance variable 

limit states. The numerical results demonstrate that structural reliability is significantly influenced by the variability of 

all random variables but more importantly by seismic loading randomness. It’s shown that, when the variability of the 

random parameters is higher, the effects on structural reliability are more noticeable. In addition, preliminary 

sensitivity analysis based on the First Order Reliability Method (FORM) that gives information on the sensitivity of the 

randomness of the inputs parameters, shows that the 11 stochastic input parameters seismic probabilistic problem can 

be effectively reduced utilizing only 4 random variables, namely: the Peak Ground Acceleration, concrete elastic 

modulus, core inertia and reinforced concrete density. 

Keywords− First Order Reliability Method, MCS, Peak Ground Acceleration, sensitivity, tall building structures. 

 

NOMENCLATURE 

I. INTRODUCTION 

Uncertainties in the construction process may be categorized 

into two primary types: natural variability and human-induced 

factors (e.g. [1]). Natural uncertainties stem from 

unpredictable environmental loads (wind, seismic, snow, live 

loads) and material behavior variations, while human-induced 

uncertainties arise from design approximations, computational 

errors, etc. 

The evolution of computational power has enabled the explicit 

incorporation of uncertainty quantification in structural 

analysis, facilitating deeper understanding of the behavior of 

probabilistic structures. (e.g. [2-5]) 

This study investigates the effectiveness of conventional 

Monte Carlo Simulation (MCS) in assessing structural 

performance and system reliability for high-rise buildings. 

Failure is defined as the exceedance of the building's lateral 

top displacement beyond code-specified limits (e.g., H/500 

as per IBC design code [6]). Stochastic analyses are 

conducted on a representative high-rise buildings under 

seismic loading, with the following probabilistic modeling: 

• Geometrical parameters as independent normal 

random variables 

• Structural materials and loads modeled as 

lognormally distributed 

The sensitivity of structural reliability to performance 

criteria is evaluated by varying the limit-state thresholds. 

Furthermore, the capabilities and limitations of the MCS 

approach are critically examined. In addition, preliminary 

sensitivity analysis based on FORM is conducted to identify 

critical input parameters, followed by interpretation of 

practical engineering consequences. 

The paper is organized as follows: Reliability analysis 

methods are briefly described in Section 2. A description of 

Tall Building Structure Example is provided Section 3. The 

overall results of stochastic analyses to predict reliability 

index of a tall building structure with uncertain parameters 

under random seismic loading are presented in Section 4. 

Finally, the study concludes with a synthesis of key findings 

and their implications for structural reliability analysis. 

II. SOME BACKGROUND ON RELIABILITY ANALYSIS METHODS 

In the conventional probabilistic framework, the uncertainties 

are modeled as random parameters with certain distribution 

characteristics. Let denote X the vector of uncertain input 

parameters and T
mXX ],...,[ 1=X the vector of deterministic 

PGA 

MCS 

Peak Ground Acceleration 

Monte Carlo Simulation. 

FORM First Order Reliability Method. 

X  Mean value of random variable 

Pf Probability of failure 

R Reliability. 

)XX,(g  Performance function. 

Φ 
Cumulative Standard Normal Distribution 

Function. 

βHL Hasofer-Lind Reliability index 

Α sensitivity factor 

RPA 2024 Algerian Earthquake Regulation 

A Zone acceleration coefficient 

η correction factor of damping 

ξ percentage of critical damping  

y  allowable maximum displacement 

ρ Density  

I Inertia 

E elastic modulus 
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input parameter (mean values of uncertain variables); the 

probability of failure Pf can be given as:  

  md

g

dxpgPfP x

XX,

xxx,XX, 


==

0)(

...1)(...0)(              (1)   

where )( XX,g  = )( XX,yy − is the limit state function and 

0)( XX,g expresses the failure event, hence the reliability 

can be defined as 0)( XX,g ; T
m ],...,[ 1 xxx = represents the 

realization of X , )x(x,px represents the joint probability 

density function of the system parameters, typically estimated 

from empirical measurement data. The variable y denotes the 

performance metric, while y corresponds to its critical 

threshold (limit state). 

For evaluating the probability of failure described in equation 

1, various numerical methods are available for this purpose, 

including Monte Carlo Simulation (e.g. [3,7]), First- and 

Second-Order Reliability Methods (FORM/SORM) (e.g.[1]), 

Point Estimate Methods (e.g. [8]) and Response Surface 

Method (e.g. [9]). 

A measure of the system reliability can be given by the 

Reliability Index  

                                β = Φ-1(1 – Pf )                                        (2) 

 

where Φ-1 denotes the inverse standard normal cumulative 

distribution function. The reliability R is computed by: 

 

                                   R=Φ(β)                                           (3)  

                                                                     

where Φ represents the standard normal cumulative 

distribution function 

II.1 Monte Carlo Simulation technique  

In stochastic assessment, the MCS method is habitually utilized 

when the analytical solution is not possible and the failure 

domain cannot be described by an analytical form. The Monte 

Carlo Simulation (MCS) method is particularly indispensable 

for complex problems involving numerous stochastic input 

parameters, where conventional reliability analysis techniques 

(e.g., FORM/SORM) prove inadequate. While MCS boasts a 

straightforward mathematical formulation and unparalleled 

versatility in handling problems of arbitrary complexity, its 

principal drawback lies in the prohibitive computational cost 

associated with traditional implementations—especially for 

high-dimensional or low-probability failure events. One basic 

advantage of the Monte Carlo Simulation over the other 

reliability analysis methods for the particular type of problems 

investigated in the present study is that its efficiency is not 

affected by the additional complexities due to non-linear 

analysis and the dynamic loads.  

The computational cost of MCS grows proportionally when the 

number of input parameters is large or/and the magnitude of Pf 

is small, since both cases require a huge sample size. For this 

reason, various sampling techniques, also called variance 

reduction techniques, have been developed in order to improve 

the computational efficiency of the method in order to 

minimize the sample size and minimize the statistical 

inaccuracy that is intrinsic to MCS approaches. 

Expressing the limit state function as 0)( XX,g , where 

T
mXX ],...,[ 1=X is the vector of the random variables and 

since MCS is based on the theory of large numbers (N∞), an 

unbiased estimator of the probability of failure is given by 




=
=

N

j
jI

N
fP

1

)(
1

x      

(4) 

in which, I(xj ) is an indicator for successful and unsuccessful 

simulations defined as 

 

                              1   if     0)( XX,g   

              I(xj )= 

                              0    if     0)( XX,g  

(5) 

 

To estimate the failure probability Pf , the Monte Carlo method 

generates N independent random realizations of the input 

vector x, typically sampled from a uniform probability 

distribution. For each realization xj, the limit-state 

function g(xj) is evaluated. The failure probability is then 

estimated as: 

N

n
fP =  (6) 

where N represents the total number of Monte Carlo trials and 

n denotes the count of simulations where the response exceeds 

the deterministic case (evaluated at mean input values). 

Traditional MCS is that in order to acquire an accurate 

prediction of output first and second moments, the analysis 

may require thousands of simulation runs, resulting in 

computationally intensive and resource-demanding 

calculations. 

To enhance computational efficiency while preserving the 

accuracy of Monte Carlo Simulation, several variance 

reduction techniques have been developed (e.g. [1, 5, 10-11]).  

III.   DESCRIPTION OF TALL BUILDING STRUCTURE EXAMPLE 

The case study examines a 35-story wall-frame structure 

(height: 122.5 m) as shown in Figure 1 [12]. The lateral load-

resisting system for seismic actions along the long facade 

consists of: 

• Six moment-resisting frames 

• A central core (I = 313 m⁴) 

With a concrete elastic modulus (E) of 2×10⁷ kN/m², this 

analysis aims to quantify the structural reliability under seismic 

loading conditions compatible with the design spectra derived 

from Algerian Earthquake Regulations [13] based on five 

parameters: soil types S1 (rocky site), category 1A with an 

Importance coefficient I =1.2. The structure is assumed to be 

located in a moderate seismicity zone (zone II a) characterized 

by an acceleration coefficient A = 0.25g (see Fig. 2). Table I 

presents the moment of inertia values for frame columns and 

girders, along with their statistical distributions, for the 35-

story case study building. 

The seismic action is represented by the following Design 

Response Spectrum as per the Algerian Earthquake 

Regulations (RPA2024) 

A: Zone acceleration coefficient  

η: damping correction factor   
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   (used when ξ is not equal to 5%)  

ξ: damping ratio 

I: Importance coefficient 

T1, T2: characteristic site periods corresponding to the 

designated soil category  

S: Site coefficient    
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 (7) 

The top displacement is selected as the governing parameter 

for the performance function evaluation. 

As quantified in Table I, the stochastic input variables 

comprise: 

• Geometric parameters (e.g., member dimensions), 

• Material properties (e.g., concrete strength), and 

• Seismic loading, characterized through Peak 

Ground Acceleration (PGA) variability  

It should be noted that there is Additional stochastic 

parameters significantly influence structural reliability 

assessments, particularly live load uncertainties (e.g. [14]), 

spatially correlated soil variations (e.g. [15]), and soil-

structure interaction complexities (e.g. [16]) etc...For the sake 

of clarity we will focus on the variables mentioned above. 

The corresponding limit state function takes the form: 

  )(),...,,( Hz =−= yyPGAIIg bici               (8) 

The limit state compares the allowable top displacement ( y ) 

against the response spectrum-derived demand. A parametric 

reliability analysis was conducted by progressively 

increasing y and computing the failure probability via MCS at 

each step. The study employed 80,000 stochastic samples of 

PGA and first-mode frequency, with their distributions shown 

in Figures 3–4. 

 

 
(a) (b) 

Fig. 1. Plan (a) and 3-D view (b) of 35-story wall-frame 

 

 

Fig. 2. Elastic design response spectrum 
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TABLE I 

STRUCTURAL PARAMETERS AND STATISTICAL DATA FOR 35-STORY HIGH-RISE BUILDING 

Parameters Stochastic variable Symbol Mean Coefficient of 

variation 

Distribution 

geometrical 

Core  Icor 313 m4 

0.05 Normal 

Frame 1  Iic1 0.083 m4 

 Iec1 0.050 m4 

 Ig1 0.011 m4 

Frame 2  Iic2 0.050 m4 

 Iec2 0.034 m4 

 Ig2 0.005 m4 

material 

Elastic modulus E 2 x 107 KN/m2 0.15 

Lognormal Damping Ratio ξ 7% 0.25 

Density  Ρ 2500 Kg/m3 0.20 

Loading Peak Ground Acceleration PGA 0.25g 0.30 Lognormal 

Where i: Interior, E: exterior, c: column and g: girder. 

 
Fig. 3. Histogram for PGA generated with MCS technique. 

IV. RESULTS AND DISCUSSION 

A comprehensive evaluation of the proposed structural 

reliability methodology's practical utility and performance 

characteristics is presented in this section. The case study 

structure enables an efficient numerical solution through 

modal superposition techniques (e.g. [17]), significantly 

enhancing the computational feasibility of Monte Carlo 

Simulation (MCS) implementation. 

Through combined seismic response spectrum analysis and 

conventional Monte Carlo Simulation (MCS), the structural 

reliability assessment yields: 

• Probability of failure (Pf) = 4.94 × 10⁻² (95.06% 

reliability) 

• Reliability index (β) = 1.651 

These MCS-derived results are comprehensively summarized 

in Table II. 

TABLE II. 

RELIABILITY RESULTS of Tall Building Structures MCS 

y (mm) Pf R (%) βMCS 

10 100 0,000 -8,112 

50 99,931 0,069 -3,200 

125 65,654 34,346 -0,403 

143 49,698 50,302 0,008 

145 48,008 51,992 0,050 

175 26,634 73,366 0,624 

245 (H/500) 4,938 95,062 1,651 

300 1,163 98,837 2,269 

350 0,308 99,692 2,739 

400 0,082 99,918 3,147 

For all the points  y = 51.8 mm 

 
Fig. 4. Histogram for frequency of first vibration mode of 35 story building, 
generated with MCS 

The probability distributions of both seismic intensity (PGA) 

and structural reliability (performance variable CDF) are 

shown in Figures 5 and 6 respectively, with their theoretical 

PDF fits. These results were obtained through extensive 

Monte Carlo simulation (N = 80,000 realizations). 

Figure 7 presents the computed failure probabilities for the 

case study structure as a function of the seismic load 

Coefficient of Variation (COV). The probabilities correspond 

to exceedance of the specified limit state for top displacement 

(the selected performance variable). The results demonstrate a 

clear positive correlation between failure probability and 

increasing seismic load variability. 

The First-Order Reliability Method (FORM) offers an 

additional valuable feature through its directional cosines [1], 

which quantify the sensitivity of the reliability index to each 

random input variable. This sensitivity information is 

particularly important for robust design optimization. A 

preliminary FORM-based sensitivity analysis was performed, 

revealing that variables with sensitivity measures below a 

specified threshold α (Equation 9) could be treated as 

deterministic. For this case study, α was set at 3%, allowing 

identification of parameters with negligible influence on the 

structural reliability. It should be mentioned that although the 

First-Order Reliability Method (FORM) offers directional 

cosines for sensitivity ranking, other reliable methods, like the 

response surface method (e.g. [18]) or incomplete Monte 

Carlo simulation (e.g. [19]), provide complementary benefits 

for sensitivity analysis using reliability index. 

𝛼𝑖 =
(
𝜕𝑔

𝜕𝑋𝑖
′)

∗

𝜎
𝑋𝑖
′

√∑ (
𝜕𝑔

𝜕𝑋𝑖
′𝜎𝑋𝑖

′)

2∗
𝑛
𝑖=1

                                       (9) 
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   Fig. 5.  Histograms for top displacement generated with MCS 

 

Fig. 6. Reliability of study tall building structure calculated by MCS 

The reliability analysis was thus simplified from an 11-

dimensional random variable problem to a 4-variable 

formulation, retaining only the most influential parameters: 

1. Peak Ground Acceleration (PGA, α = 0.861) 

2. Concrete elastic modulus (E, α = 0.291) 

3. Core moment of inertia (I, α = 0.095) 

4. Reinforced concrete density (ρ, α = 0.379) 

Figure 8 demonstrates the characteristic convergence behavior 

of the failure probability estimate as sample size increases. 

While Monte Carlo Simulation (MCS) with N realizations 

provides robust reliability estimates, its computational demand 

becomes significant for systems with numerous degrees of 

freedom (DOFs). For this case study, the analysis employed 

8x104 simulations, determined through progressive assessment 

of failure probability convergence versus sample size. More 

complex scenarios may require substantially larger sample 

sizes due to slower statistical convergence. In the current 

implementation (11 random input variables and one output 

performance function), the MCS required 9 minutes and 23 

seconds of CPU time for 8 x104 samples. 

V. CONCLUSIONS 

The design of tall building structures is inherently influenced 

by multiple uncertainty sources. However, through systematic 

reliability-based approaches, structural safety can be enhanced 

to meet or exceed codified reliability thresholds.  

The analysis demonstrates that structural reliability is sensitive 

to variability in all uncertain parameters, with particularly 

strong dependence on loading randomness, density of 

concrete, core inertia and concrete elastic modulus 

uncertainty. Furthermore, the effects on structural reliability 

have been shown to be more pronounced for higher variability 

of the stochastic variables. 

 

 

 

 

Fig. 7 Structural Failure Probability as Function of Seismic Load COV 

 

Figure 8 Convergence of probability of failure with increasing sample size 

Monte Carlo Simulation (MCS) for stochastic analysis of tall 

buildings often requires substantial computational resources, 

particularly for structures with numerous degrees of freedom 

and multiple random variables. Implementing variance 

reduction techniques combined with sensitivity analysis via 

directional cosines can significantly improve computational 

efficiency while maintaining accuracy - a crucial 

consideration for robust design applications. 
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