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2-D Steady-State Heat Transfer Prediction in 
Rotating Electrical Machines Taking into account 

Materials Anisotropy: Thermal Resistances 
Network, Exact Analytical and Hybrid Methods 

Kamel Boughrara and Frédéric Dubas 
 

Abstract− This paper presents two-dimensional (2-D) thermal resistances network (TRNM), exact analytical (AM) and 
hybrid (HM) methods for calculating steady-state temperature and heat flux distribution in rotating electrical machines 
considering materials anisotropy (i.e., different thermal conductivities in both directions). They are based on the thermal 
equivalent circuit (TEC), the improved exact subdomain (SD) technique where the solution and thermal conductivities depend 
on both directions (r, θ) and the coupling between the two methods. TRNM is known as a semi-analytical method that can 
predict the heat transfer in the machine in less time than finite element method (Fem). The implementation of TRNM by 
considering the difference between the thermal conductivities in (r, θ) using its equivalence with Fem is presented. The SD 
technique is improved to consider the difference between thermal conductivities in the directions (r, θ). It is known that the 
SD technique with non-homogeneous boundary conditions (BCs) is very sensitive to the dimensions of SDs where the 
harmonics number and the accuracy are lower in small subdomains. Hence, the HM from the TRNM and AM is given to 
answer these inaccuracies especially in electrical machines with a high number of stator slots and rotor poles. The heat sources 
are volumetric power losses due to hysteresis, eddy-current, Joule losses and windage losses in all the regions of the machine 
obtained by a simplified method. The studied problem is conductive with conductive interface conditions (ICs) and convective 
heat transfer between the machine and the external air and at the rotor internal air. The semi-analytical results are compared 
between them as well as with those obtained by Fem. 

Keywords−Anisotropic materials, conductive heat transfer, convection, exact subdomain technique, thermal resistances 
network. 

 

NOMENCLATURE 

 

I. INTRODUCTION 

Thermal modeling is used to design the insulation system of 
electrical machines. Currently, the Fem and TEC are the most 
used methods [1]-[6]. Some of them take into account materials 

anisotropy especially in the z-direction with a three-
dimensional (3-D) study. Recently, Boughrara et al. (2018) [7] 
introduced a new 2-D exact SD technique able to predict 
steady-state heat transfer in rotating electrical machines without 
considering the anisotropy of thermal conductivities. This 
model is based on the Dubas’ superposition technique [8]-[9] 
developed for the prediction of the magnetic field in air- or iron-
cored coil. This method is very accurate and can be used for 
different topologies of synchronous and asynchronous 
machines. 

The thermal modeling of electrical machines using TEC in 
steady-state and/or transient is fast with acceptable accuracy 
compared to Fem and AM, especially when the number of 
nodes and thermal resistances is low. TRNM is more accurate 
than TEC with higher time consumption [10]-[11]. However, in 
reality, it is not widely used for thermal design. The numerical 
thermal model is used in a second stage of the design to verify 
the temperature distribution given by semi-analytical methods. 
In various methods, the power losses are used as heat sources 
or coupled directly to electromagnetic analysis. Fem is also 
used with computational fluid dynamics to model convective 
problems inside the electrical machine and the different type of 
cooling. Recently, there are a few references that used an HM. 
TRNM of the stator and rotor are coupled to an exact AM only 
in the air-gap [10]-[11]. 

In this paper, we present three semi-analytical methods, viz., i) 
TRNM, ii) AM and iii) HM. TRNM is considered as Fem where 
the steps of meshing, materials definition with different thermal 
conductivities in the directions (r, θ), elementary matrix/vector 
and introduction of BCs exist. The model presented in [7], 
based on the exact SD technique, is improved to consider the 
materials anisotropy in the directions (r, θ) for the prediction of 

TRNM Thermal Resistances Network Method. 
AM Analytical Method. 
HM Hybrid Method. 
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steady-state temperature and heat flux in rotating electrical 
machines. AM is suitable for the SDs with high dimensions 
where the harmonics number can be high to achieve very good 
accuracy.  

 

Fig. 1: Studied inset-PM machine [7]. 

This is the case of electrical machines with a low number of 
stator slots and rotor poles. In electrical machines with a high 
number of poles and stator slots, it is interesting to use the HM 
(i.e., the coupling between TRNM and AM) to simplify the 
thermal model and improve the accuracy. The used HM also 
considers the materials anisotropy. TRNM is used to model the 
stator slots and teeth SDs and rotor permanent-magnets (PMs) 
and teeth SDs while the AM is used to model the stator, rotor 
and air-gap. The coupling between TRNM and AM is achieved 
by using the discrete Fourier series at the ICs to satisfy the 
temperature continuity [12]. 

The developed semi-analytical methods are used to determine 
the heat transfer in inset-PM machines. Although, it is valid for 
most rotating electrical machines [7]. 

To determine the heat sources, a simple method is used in this 
paper to determine the power losses for the studied inset-PM 
machine [13]. Although, AM and magnetic resistances network 
method (MRNM) can be used [14]-[16]. The semi-analytical 
results are compared between them and with those obtained by 
Fem [17]. 

II. TEMPERATURE CALCULATION METHODS 

The steady-state heat transfer studied in this paper is conductive 
with volumetric power sources and convective at the ambient 
air and the rotor shaft. The model is adopted with the following 
assumptions: 
 The materials are considered anisotropic having different 

constant thermal conductivities in both directions without 
any variation with temperature; 

 The stator and rotor slots have radial sides; 
 The heat sources are volumetric, uniform and constant in 

each SD; 
 The radiation outside stator and inside the rotor is ignored; 
 The interfaces between all regions are considered perfect 

without any contact resistance. 

The analyzed inset-PM machine has 6-slots/4-poles [see Fig. 1]. 

A. Thermal Resistance Network Method (TRNM) 

The studied inset-PM machine is modeled using TRNM with 
the following steps: 

1- Meshing 

The step of meshing is performed in the same way as in Fem 
with the use of circular elements having a node in the middle of 

each element. First, we define 1ms   radii  wrs i  with i vary 

from 1 to 1ms   and 1ns   angles  wt j  with j vary from 1 

to 1ns  . The number of nodes which is equal to the number 
of elements is 1ms n . The numbering and coordinates of 
nodes are given by 

For i from 1 to ms  do 
For j from 1 to ns do 

( , ) ( 1)nods i j j i ns    ;                                              (1) 

( , )l nods i j ; 

     1 ( 1) ( )
cos

2 2

wrs i wrs i wt j wt j
x l

      
 

;   (2) 

     1 ( 1) ( )
sin

2 2

wrs i wrs i wt j wt j
y l

      
 

;   (3) 

end do 
end do 
 
In Fig. 2, we can show an example of mesh with 32 elements 
and nodes (i.e., 4ms   and 8ns  ). In this example, each 

element has a thickness of    1wrs i wrs i   and opening 

of    1wt j wt j  . This example is introduced for clarity 

in the implementation of TRNM: 

 310 . 30 60 90 120 150wrs             (4) 

0 3. 5. 3. 7. 2
4 2 4 4 2 4

wt
          

  (5) 

As it can be shown in (1), the numbering is done starting with 
1 in the θ-direction than after in the r-direction. From the two 
first radii, we have 8 elements and 8 nodes numbered from 1 to 
8 from right to left. The next two radii are numbered from 9 to 
16 and the same for the other radii. 

2- Connectivity Matrix 

From Figs. 2 ~ 4, we can show that the node 9 is connected to 
4 nodes (10, 1, 16, 17). This is the case for the entire mesh with 
elements having 4 thermal resistances. Supplementary nodes are 
added to the first and last radii to represent the BC between the 
stator and the external air and the rotor with the shaft. The 
connection between the nodes permits to obtain a matrix called 

connectivity matrix  5,isks k  as in Fem. For internal elements 

that are not situated in the boundaries, we define the matrix 
isks as 

For i from 2 to 1ms   do 
For j from 2 to 1ns   do 

( , )k nods i j ; 

   1, , 1isks k nods i j  ;                                              (6) 

   2, ,isks k nods i j ;                                                   (7) 

   3, , 1isks k nods i j  ;                                              (8) 

   4, 1,isks k nods i j  ;                                             (9) 

   5, 1,isks k nods i j  ;                                           (10) 

end do 
end do 
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Fig. 2: Example of meshing with circular elements. 
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Fig. 3: Thermal resistances of an element. 

1238

9101116

171824

2532

13

21

33343540

414248

70 °C

70 °C

 

Fig. 4: TRNM representation of the example mesh. 
 

Boundary elements have some nodes without connectivity and 
the connectivity value is zero. Generally, two types of elements 
can be used in TRNM and can have 1, 2, 3, 4 or 5 nodes [see 
Figs. 3(a) and (b)]. The elements can have 4, 3, 2 or 1 thermal 
resistance. 

The thermal resistance for elements with 1 resistance can be 
radial or tangential. However, for elements with 4 thermal 
resistances, we have 2 radial and 2 tangential resistances. The 
element shown in Fig. 3 is used to represent thermal conduction 
[see Fig. 3(a)] and convection [see Fig. 3(b)] respectively. In 
this paper, the internal elements with a node in the center and 4 
thermal resistances are used to represent the thermal conduction 
by 

 
 

    

2

1

1
lnln

1 1

2 2 1ir
r u r u

wrs iR
wrs iR

R
L wt j wt j Ll  l

  
    

    
  

           (11) 

   
 
 

2

1

11 1

2 2 1
ln ln

i

u u

wt j wt j
R

R wrs i
L L

R wrs i



 



l l

 
 

   
       

           (12) 

where rl  and l  are the thermal conductivity in the r- and -

direction; 1R , 2R  and   are respectively the internal, the 

external radii and the opening of element; and uL  the axial 

length of the machine. 

The conductivity in anisotropic material is a tensor with 

  0

0
r



l
l

l
 

  
 

                               (13) 

It is interesting to note that the conductivities rl  and rl  are 

considered null for the studied machine. In polar coordinates, 

the thermal conductivity tensor  l  can be obtained from the 

thermal conductivity tensor in Cartesian coordinates as [18] 

cos sin

sin cos
xx xyrr r

xy yyr



 

l ll l  
l ll l  
    

         
            (14) 

                             
cos sin

.
sin cos

 
 

 
 
 

 

It is important to note that Fem uses the Cartesian coordinate’s 
tensor for the thermal conductivity [17] and [19]. For this, the 
validation of the results considering the materials anisotropy in 
polar coordinates is done with TRNM and AM. 

The boundary elements [see Fig. 4] with 1 node at fixed 
temperature (viz., 70°C) represent the thermal convection 
resistance as follows 

      
1

1 1
rk

s u

R
h L wt j wt j wrs ms


  

             (15) 

      
1

1 1
rk

r u

R
h L wt j wt j wrs


 

               (16) 

where sh  and rh  are respectively the convection coefficients 

at the external radius and at the shaft of the machine. 

In the proposed method, the Dirichlet’s condition (without 
convection) can be introduced by setting the thermal resistance 
of convection to zero. 

For the mesh example in Fig. 4, there are 48 equations 
corresponding to 48 elements and nodes. Each conductive 

element has an internal volumetric source of heat iP  and 

connected to four nodes. All elements can be represented 
similarly to equations of elements 1 and 2 by  

1 8 1 33 1 91 2
1

1 8 1 2 1 33 1 9r r r

T T T T T TT T
P

R R R R R R R R   

  
   

   
      (17) 

2 3 2 34 2 102 1
2

2 1 2 3 2 34 2 10r r r

T T T T T TT T
P

R R R R R R R R   

  
   

   
      (18) 



24                                              K. Boughrara et al.: 2-D Steady-State Heat Transfer Prediction in Rotating Electrical Machines  
 

 

The 16 equations of convection at boundaries are similar to 
those of elements 41 and 34, e.g., 

41 25

25 41

0
r

T T

R R





                                (19) 

34 2

2 34

0
r

T T

R R





                                (20) 

where 41 34 70T T C   . 

In the case of Dirichlet's conditions, the thermal resistances of 
convection are fixed at infinity (i.e., 41 34R R   ). A fixed 

heat flux BC can be considered. In this case, (16) and (17) can 
be modified as follows 

41 25
41

25r

T T
P

R


                                (21) 

34 2
34

2r

T T
P

R


                                (22) 

where 34P  and 41P  are imposed heat fluxes. The periodicity 

condition is satisfied by connecting nodes 1 and 8, 9 and 16, 17 
and 24, 25 and 32. 

3- Global Matrix 

The 48 equations are represented in matrix form  48, 48gm  

without replacing the known temperatures at the BCs. The 
second member of the system represents the entire values of iP  

with a vector  48f which represent the power losses in the 

machine. We begin the assembly gm with the internal elements 
of the conductive problem, then the equations of thermal 
convection at the rotor shaft and the stator ambient air. The 
introduction of BCs by convection is given by the thermal 
resistances and the fixed temperature (viz., 70°C) at the rotor 
shaft and the external air of the machine. The fixed 
temperatures are introduced into the global matrix and vector 
using high diagonal numbers in the global matrix and vector. 
These steps for constructing the global matrix are given in 
Appendix A. 

The global matrix and vector for the 48 unknown temperatures are 
solved by direct method. 

1.T gm f                                      (23) 

The obtained solution vector  48T  allows us to calculate the 

density of heat flux. The radial density of heat flux for each 
element can be calculated by 

    

  
4,

4,

4, ,
k isks k

kr kr isks k r

T T
q isks k k

S R R





            (24) 

    

  
5,

5,

5, ,
k isks k

kr kr isks k r

T T
q isks k k

S R R





            (25) 

The tangential density of heat flux for each element is obtained 
by 

    

  
1,

1,

1, ,
k isks k

k k isks k

T T
q isks k k

S R R  





            (26) 

    

  
3,

3,

3, ,
k isks k

k k isks k

T T
q isks k k

S R R  





           (27) 

where krS  and kS   are respectively the surface of an element 

in the r- and -direction. 

For the analyzed inset-PM machine with TRNM, 36ms  , 
360ns  , the total number of elements and nodes is 12,960. 

The number of additional nodes to consider convection heat 
transfer at the external radius is 360 and at the shaft is 360. The 
dimensions of the global matrix and vector are respectively 
13,680 13,680  and 13,680 . 

B. Analytical Method (AM) 

1- Problem Description, Assumptions and Partial Differential 
Equations (PDEs) 

In this section, we have improved the AM developed in [7] to 

consider the materials anisotropy in both directions  ,r  . The 

machine is subdivided into 7 regions, viz., Region I for the air-
gap, Region IIj for the PMs, Region III for the stator yoke, 
Region IVi for the stator slots, Region V for the rotor yoke, 
Region VIj for the rotor teeth, and Region VIIi for the stator 
teeth. 

In steady-state, PDEs representing the temperature distribution 
in each region are given by 

 in Region I by 

2 2

2 2 2
er e

er eTI TI TI p
r r r r

l l
l


  

   
  

              (28) 

where erl  and el  are respectively the thermal conductivities 

(in W mK ) of the air-gap in the r- and -direction, and ep  is 

the windage loss density (in 3W m ). 

 in Regions IIj by 

2 2

2 2 2
mr m

j mr j j jTII TII TII Pm
r r r r

l l
l


  

   
  

   (29) 

where mrl  and ml  are respectively the thermal conductivities 

(in W mK ) of PMs in the r- and -direction, and jPm  the 

power loss density of the jth Region II (in 3W m ). 

( )rq R r

( )rq L r
 T g 

0T 

 T f 
 

(a) Non-homogenous BCs. 
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( )r
rq R r

0rq 

( )r
rq L r

0rq 

 T g 

0rT T    

0rT 

0rT 
 T f 

 

(b) Principle of superposition. 

Fig. 5: Region with non-homogenous BCs [7]. 

 
 in Region III by 

2 2

2 2 2
sr s

sr sTIII TIII TIII p
r r r r

l l
l


  

   
  

             (30) 

where srl  and sl  are respectively the thermal conductivities 

(in W mK ) of the stator yoke in the r- and -direction, and sp  

the power loss density in the stator iron (in 3W m ). This power 

loss is considered uniform and constant in the whole stator iron. 

 in Regions IVi by 

2 2

2 2 2
sltr slt

i sltr i i iTIV TIV TIV Psl
r r r r

l l
l


  

   
  

          (31) 

where sltrl  and sltl  are respectively the thermal conductivities 

(in W mK ) of stator slot in the r- and -direction, and iPsl  the 

Joule and proximity losses densities (in 3W m ). This power is 

considered uniform and constant in each stator slot. 

 in Region V by 

2 2

2 2 2
rrr

rr rTV TV TV p
r r r r

ll
l


  

   
  

             (32) 

where rrl  and rl  are respectively the thermal conductivities 

(in W mK ) of rotor yoke in the r- and -direction, and rp  the 

power loss density in the rotor iron (in 3W m ). This power loss 

is considered uniform and constant in the rotor iron. 

 in Regions VIj by 

2 2

2 2 2
ar a

j ar j j jTVI TVI TVI Pdr
r r r r

l l
l


  

   
  

       (33) 

where arl  and al  are respectively the thermal conductivities 

(in W mK ) of rotor tooth in the r- and -direction, and jPdr  the 

power loss density in the rotor tooth (in 3W m ). This power loss 

is considered uniform and constant in the rotor tooth. 

 in Regions VIIi by 

2 2

2 2 2
dsr ds

i dsr i i iTVII TVII TVII Pds
r r r r

l l
l


  

   
  

    (34) 

where dsrl  and dsl  are respectively the thermal conductivities 

(in W mK ) of the stator tooth in the r- and -direction, and 

iPds  the power loss density in the stator tooth (in 3W m ). This 

power loss is considered uniform and constant in the stator 
tooth. 

Using  l  q T , the heat flux density components (in 

W/m2) in polar coordinates are defined as 

 ,
r r

T r
q

r


l


 


                            (35) 

 ,T r
q

r




l



 


                           (36) 

where rl  and l  are respectively the thermal conductivities in 

the r- and -direction. 

2- Temperature Solution in each SD 

The steady-state heat transfer in the inset-PM machine is 
studied using the improved 2-D exact SD technique presented 
in [7]. The general solutions of the above PDEs in non-
homogenous BCs [see Fig. 5(a)] are deduced by applying the 
superposition principle [8]-[9] [see Fig. 5(b)] and using the 
Fourier’s series as well as the separation of variables method. 
The Laplace’s equations in Region I, III and V have 
homogeneous BCs and Region II, IV, VI and VII present non-
homogeneous BCs. The solution of Laplace's equation 

     
2 2

2 2 2
, , , 0r

rT r T r T r
r r r r

ll
 l  


  

  
  

     (37) 

Using the separation of variables method by replacing 

     , ,T r R r r    gives 

 

 

 

 

2
2

2
2

rr

d R rdR r
rr

dr dr
R r R r

ll
  and/or 2           (38) 

 

 

2

2
2

d

d


l

 




 


and/or 2l                    (39) 

where 2  is positive constant. 

For a positive constant equal to 2 , the solutions are 
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For a negative constant equal to 2 , the solutions are 
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For the constant equal to zero, the solutions are 

   3 1 2lnR r B B r                              (44) 
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 3 1. 2A A                                    (45) 

In Region I, III and V with the homogenous BCs and periodicity 

equal to 2 , the constant A1=0 and n  l  (with n is a 

positive integer). The periodic regions II, IV, VI and VII in the r- 
and θ-direction with the non-homogeneous BCs have the 

constant A1=0 and 
n

a 


 l  in the θ-direction for PMs 

region where a is the PM-opening angle and 
2

1

ln
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r
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 
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 in 

the r-direction. The particular solution of Poisson’s equations 
(28) to (34) in each SD is given by 

2 4p rT pr l                                       (46) 

where p is a volumetric constant power loss in each SD. 

The solution of (28) in the air-gap with the homogenous BCs is 
given for each harmonic n by 
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and can be written as 
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where e e er l l , and pe the windage loss in the air-gap. 

The solution of (29) in Region IIj with the non-homogenous 
BCs is given for each harmonic by 
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and can be reduced using BCs presented in Fig. 5 as 
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The stator yoke represented by Region III has homogenous BCs 
and the solution of (30) is given by 
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where s s sr l l . 

The sQ  stator slots represented by Region IVi has non-

homogenous BCs, the solution of (31) is given by 

   

  

 

 

11

2
,0 ,0

..
1

, 1 , 1 1
1 1 4

1

, 1

1

1

, 1

1

( , ) 1 2 ln 4

1 2 cos 1

1

3

2

4

m slm sl

i i i i slr

fscfsc
mm

i m i m m i
m s

k
i

sl
i k

k

sl

k
i

sl
i k

k

sl

TIV r C C r Psl r

r r
C C fsc c

r R

fs
sh c

C
fs

sh c

fs
sh c

C
fs

sh c



 l

 

 




 








  

             

 
 

 
 
 
 
 

 
 



L

1

1
1 1

sin ln
kk

k
k s

r
fs

R

 
 
 
 
 

    
        

 
 

  
     



 (52) 
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The rotor yoke represented by Region V has homogenous BCs, 
the solution of (32) is given by 
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 (53) 

where r r rr l l . 

 

Fig. 6: Distribution of AM and TRNM regions in the HM (air-gap zoomed). 
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In Region VIj with the non-homogenous BCs, the solution of 
(33) is given by 
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In Region VIIi representing the stator teeth with iPds  power 

losses, we have 
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The anisotropy coefficient can be defined as 

r l l                                            (56) 

3- ICs and their Development 

To determine the unknown coefficients of temperature in each 
SD, there are 18 ICs, viz., 14 ICs are in the θ-direction and 4 
ICs in the r-direction [7]. The development of ICs permits to 
obtain an equations system whose unknowns are the 
coefficients of Fourier’s series solution in each SD. The solving 
of this system gives the temperature and heat flux distribution 
in the whole machine. 

For the studied inset-PM machine with the harmonics number 
in each SD: 40mml  , 40kkl  , 50mm  , 50kk   and 

200nn  , the dimensions of global matrix and vector are 

respectively 5,966 5,966  and 5,966 . 

i

j

ϕij TRNM
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Interface

Rr

Region V  

Fig. 7: Heat flux density IC between TRNM and AM at rR . 

C. Hybrid Method (HM) 

It is well known that AM is more accurate with low 
computational time than TRNM. However, when the number 
of SDs is high (i.e., the ICs number in both directions is also 
high) and their dimensions are small, the harmonics number can 
be very low and then the accuracy of AM can be very low. This 
situation can be found in the case of inset-PM machine with 
high number of stator and rotor slots. For this, we propose in 
this paper to model the stator and rotor slots regions (also the 
stator and rotor teeth) with TRNM and the other regions with 
AM [see Fig. 6]. 

To release the coupling between AM and TRNM, nodes of 
coupling are added to TRNM presented in Section A at the radii 
separating the two methods (ICs between AM and TRNM at 

rR , mR , sR  and 4r ). 

For example, at the radius rR , the continuity conditions of AM 

are given by 
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In the HM, the Region IIj and VIj are modeled by TRNM and 
Region V by AM. To satisfy the ICs (57) and (58), the nodes 
temperatures of TRNM at rR  are written as a 2  periodic 

function using discrete Fourier series [12] as 
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where 2nn ns , kT  are the temperatures at the boundary 

nodes  1, ,1nodb i  to  1, ,nodb i ns  situated at  1rR i   and 
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k  the angular position of boundary nodes at the radius rR . It 

is important to note that nn is also the total harmonics number 
of the AM solution in the Region V. 

This Fourier series function permits to replace the ICs (57) and 
(58) by 

   _,r TRNM RrTV R T                      (61) 

This above equation permits to get 3 equations as 
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To satisfy the heat flux density IC at rR , i.e., (59), each 

boundary node is considered receiving a radial heat flux ij  

from the AM region [see Fig. 7] as [20]-[21] 
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where k  is the angular position of interface nodes and d  is 

half opening angle of an element equal to 0.5° (each element of 
TRNM has an angular opening equal 1° in TRNM). 

The development of (65) gives 
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i
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    (66) 

In the HM, 21ms   and 360ns   with 11 radii for TRNM 
rotor region and 11 radii for TRNM stator region. The elements 
and nodes number of TRNM stator region is 3,600nsgs   and 

TRNM rotor region is 3,600nsgr  . In TRNM rotor region, we 

have added 2 boundaries additional nodes at  1rR i   and 

 11mR i   represented by vectors  1,1,nodb j  and 

 2,11,nodb j  where j varies from 1 to ns . For TRNM stator 

region, we have added 2 boundaries nodes at  12sR i   and 

 4 22r i   represented by vectors  3,12,nodb j  and 

 4,22,nodb j . The nodes of TRNM connected to the 4 

boundary nodes  1,1,nodb j ,  2,11,nodb j ,  3,12,nodb j , 

 4,22,nodb j  are    1,Bdrti j nods j , 

   10,Bdrto j nods j ,    12,Bdsti j nods j  and 

   ,Bdsto j nods ms j  respectively. The total elements and 

nodes number of TRNM mesh considering the nodes number at 
the 4 BCs is equal to 8,640nsgb  . There are 3 AM regions in 

the HM where each AM region necessitates 2 4 nn   
unknowns. The total nodes number of TRNM regions and AM 
regions is 1 10,806nsgb  . 

After defining the nodes connectivity as described in Section 
A, the assembly of the global matrix from TRNM and AM is 
performed. We start with the TRNM nodes representing the 
rotor slots and teeth. The introduction of equations (62) to (64) 
in the global matrix gm  is performed as given in Appendix B. 

There are 360 equations (66) to be introduced in the global 
matrix depending on the number of boundary nodes at rR . The 

equations (62) to (64) and (66) related to the ICs (57) to (59) at 

rR  have been introduced in the global matrix gm and the 

global vector f of the HM. The coupling is performed between 

the AM temperature of rotor  ,TV r   (53) and TRNM at rR . 

In the same way, the coupling between  ,TI r   (48) and rotor 

TRNM at mR  and sR , and the coupling between  ,TIII r   

(50) and stator TRNM at 4r  can be established and assembled 

to the global system. The introduction of convection heat 
transfer at the external radius and shaft is done using AM. 

 
TABLE. I 

PARAMETERS OF STUDIED INSET-PM MACHINE. 

Symbol Parameters Value 

Brm Remanence flux density of PMs 1.3 T 

μrm Relative permeability of PMs 1.0277 

Nc Number of conductors per stator slot 23 

Im Peak phase current 7 A 

Qs Number of stator slots 6 

c Stator slot-opening 30 deg. 

a PM-opening 40 deg. 

p Number of pole pairs 2 

Rext Radius of the external stator surface 110 mm 

r4 Outer radius of stator slot 97 mm 

Rs Radius of the stator inner surface 80.5 mm 

Rm Radius of the rotor outer surface at the PM 79.7 mm 

Rr Radius of the rotor inner surface at the PM 73 mm 

g Air-gap length 0.8 mm 

Lu Axial length 40 mm 

Ω Mechanical speed 500 rpm 

 
TABLE. II 

PARAMETERS OF THE THERMAL MODEL. 

Symbol Parameters Value 

λe Thermal conductivity of air-gap 0.03 W/(m K) 

λa Thermal conductivity of air 0.03 W/(m K) 

λm Thermal conductivity of PMs 9 W/(m K) 

λs Thermal conductivity of stator iron 55 W/(m K) 

λr Thermal conductivity of rotor iron 55 W/(m K) 

λsl Thermal conductivity of stator slot coil 1.73 W/(m K) 

ps Stator core losses 4.07 W 

pr Rotor core losses 0.31 W 

pm PM losses 7.94 W 

psl Stator slot losses 18.12 W 

Pe Windage losses in the air-gap 5 W 

hr Convection coefficient inside the rotor 100 W/(m2 K) 

Tint Temperature inside the rotor 70 ˚C 

hs Convection coefficient outside the stator 100 W/(m2 K) 

Text Temperature outside the stator 70 ˚C 
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  Anisotropy coefficients 0.5/1/1.5 

III. TEMPERATURE AND HEAT FLUX RESULTS 

The parameters and dimensions of the studied inset-PM 
machine are given in Table I. The machine has a simple 
distributed 4 poles winding. The power losses of the inset-PM 
machine at 500 rpm as well as the thermal conductivities, 
convection coefficients and ambient temperatures used in the 
thermal model are listed in Table II. The harmonics number of 
AM is 200nn  , 50mm  , 50kk  , 1 40mm   and 1 40kk 
. These harmonics numbers provide very good accuracy 
compared to Fem with a reasonable computation time. The 
average elements and nodes number of the Fem calculation [15] 
are respectively 109,168 and 55,484. 

A. TRNM Results Without Materials Anisotropy and 
Validation with Fem 

For the 6-slots/4-poles inset-PM machine, the temperature 
distribution at speed of 500 rpm in the whole machine without 
taking into account the materials anisotropy is shown in Fig. 8. 
We can observe that the temperature is higher inside the stator 
slots where power loss is higher [see Table II]. The directions of 
heat flux are represented with vectors oriented to inside and 
outside the machine. This is due to convections coefficients 
imposed outside and inside the machine. In the middle of the air-
gap, the distribution of temperature and heat flux components 
calculated by the developed TRNM and Fem using the 
parameters and power losses in Table II are given in Fig. 9. 

 

Fig. 8: Temperature and flux distribution obtained using Fem. 

 

(a) 

 

(b) 

 

(c) 

Fig. 9: Temperature and heat flux components distribution in the 
air-gap at the radius 80.05 mm. 

 

(a) In the θ-direction at 76.77 mm. 

 

(b) In the r-direction at 45.5 degrees. 

Fig. 10: Temperature in the middle of the first PM. 

 

(a) In the θ-direction at 87.72 mm. 
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(b) In the r-direction at 30.5 degrees. 

Fig. 11: Temperature in the middle of the first stator slot. 

To show the ability of the TRNM to predict the temperature 
distribution in the PMs and the stator slots, the temperature curves 
in the θ- and r-direction obtained using TRNM are shown in 
Figs. 10 ~ 11 and compared with Fem. The TRNM results are in 
good agreement with the Fem results. A small difference exist 
between TRNM and Fem results in the PM region. This difference 
is due to the meshing of machine which can be improved as done 
in TRNM [22]-[23]. A parametric analysis with variation of the 
convective coefficients sh  and rh  is also performed. Fig. 12 

shows the temperature and heat flux distribution in the inset-PM 

machine when the convective coefficients  220sh W m K   

and  2100rh W m K  . The vecors of heat flux are oriented to 

inside and outside the machine. It can be seen that the heat flux 
oriented to inside the rotor is higher than the heat flux oriented to 
outside the stator. The corresponding air-gap temperature 
distribtion is shown in Fig. 13. It can be observed that the 

temperature is higher than in the case with  2100sh W m K  . 

For the case with  220rh W m K   and  2100sh W m K 

, Figs. 14 ~ 15 show the temperature distribution in the machine 
obtained using Fem and temperature distribution in the middle of 
the air-gap obtained using the developed TRNM and Fem. It can 
be seen from Fig. 14 that the heat flux oriented to outside the 
stator is higher than the heat flux oriented to inside the rotor. 
Also, in this case, the TRNM results are very close to those of Fem. 
The variation of the temperature in the middle of the PM and stator 
slot when the convective coefficients sh  and rh  varies is shown 

in Figs. 16 ~ 17. The comparison of the TRNM results with those 
obtained by Fem confirms the validity of the proposed TRNM to 
predict the temperature and heat flux distribution in the inset-PM 
machine with a very good accuracy. 

 

   
Fig. 12: Temperature distribution and heat flux in the inset-PM machine 

for  220sh W m K   and  2100rh W m K  . 

 
Fig. 13: Temperature distribution in the middle of the air-gap 

for  220sh W m K   and  2100rh W m K  . 

   
Fig. 14: Temperature and heat flux distribution in the inset-PM machine 

for  220rh W m K   and  2100sh W m K  . 

 
Fig. 15: Temperature distribution in the middle of air-gap 

for  220rh W m K   and  2100sh W m K  . 

 

(a) Temperature at the center of the first PM. 
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(b) Temperature at the center of the first stator slot. 

Fig. 16: Temperature variation with varying sh and  2100rh W m K   
in a point at the center of PM and stator slot. 

 

(a) Temperature at the center of the first PM. 

 

(b) Temperature at the center of the first stator slot. 

Fig. 17: Temperature variation with varying rh  and  2100sh W m K   
in a point at the center of PM and stator slot. 

B. AM Thermal Results with Materials Anisotropy and 
Validation with TRNM 

The distribution of temperature and heat flux components in the 
middle of the air-gap obtained with AM and TRNM taking into 
account the materials anisotropy is shown in Fig. 18. We can 
observe a very good agreement between the AM and TRNM 
results. The temperature distribution in the middle of the first 
PM and the stator slot in the θ- and r-direction [see 
Figs. 19 ~ 20] obtained analytically and with TRNM confirm 
the accuracy of the proposed AM. Again, we can show a small 
difference due to the mesh size adopted in TRNM. 

When the cooling outside the inset-PM machine is not sufficient, 

i.e.,  220sh W m K  , the heat is not evacuated and the 

temperature is very high in the air-gap [see Fig. 21]. The same 
observation can be done in the case of insufficient cooling in the 

rotor shaft with  220rh W m K   [see Fig. 22]. In this case, the 

rotor temperature is high but lower than the case of low value of 

sh . The variation of temperature in the middle of the first PM and 

the stator slot with the convection coefficient sh  and rh  is shown 

in Figs. 23 ~ 24. Those curves are very important for the design of 
stator winding insulation and PMs whose characteristics depend on 
temperature. 

 

(a) 

 

(b) 

 

(c) 

Fig. 18: Temperature and heat flux components distribution in the 
middle of the air-gap. 

 

 

(a) In the θ-direction. 

 

(b) In the r-direction. 
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Fig. 19: Temperature distribution in the middle of the first PM. 

 

(a) In the θ-direction. 

 

(b) In the r-direction. 

Fig. 20: Temperature in the middle of the first stator slot. 

 
Fig. 21: Temperature distribution in the middle of the air-gap 

for   220sh W m K   and  2100rh W m K  . 

 
Fig. 22: Temperature distribution in the middle of the air-gap 

for   220rh W m K   and  2100sh W m K  . 

 

(a) Temperature at the center of the first PM. 

 

(b) Temperature at the center of the first stator slot. 

Fig. 23: Temperature variation with varying sh  and  2100rh W m K   

in a point at the center of PM and stator slot. 

 

(a) Temperature at the center of the first PM. 

 

(b) Temperature at the center of the first stator slot. 

Fig. 24: Temperature variation with varying rh  and  2100sh W m K   

in a point at the center of PM and stator slot. 

C. HM Thermal Results and Validation with TRNM and 
Fem 

It is not easy to use AM in heat transfer prediction for rotating 
electrical machines with high number of stator slots and rotor 
poles. The ICs in the r- and θ-direction are important and the 
dimensions of SDs are small, requiring a small harmonics 
number and thus lower accuracy. For this, it is appropriate to use 
HM. In this section, we apply the HM in both cases, with 
isotropic and anisotropic materials. For isotropic materials, the 
validation of results can be performed with Fem. 

1- Isotropic Materials 

The temperature and heat flux distribution in the middle of the 
air-gap is shown in Fig. 25. The HM results are very close to 
those from Fem. The temperature distribution in the θ- and r-
direction in the middle of the first PM and the first stator slot is 
shown in Figs. 26 ~ 27. The accuracy of HM is established also 
in those SDs where it is important to know the heat transfer for 
the insulation design. A small difference can be observed in the 
PM region between HM and Fem. The mesh size of the TRNM 
rotor has affected the HM results. For this, it is necessary to 
optimize the TRNM parts using them in HM. 
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The effect of cooling outside the inset-PM machine and inside 
the rotor shaft is represented with the convective coefficients sh  

and rh  respectively. In Fig. 28, for  220sh W m K   which 

is small, we represent the temperature distribution in the middle 
of the air-gap. The temperature is higher compared to

 2100sh W m K  . 

For  220rh W m K   compared to  2100rh W m K  , the 

temperature distribution in the air-gap [see Fig. 29] is higher than 

the case with  2100rh W m K  . Low values of convective 

coefficients represent a barrier for heat transfer outside the stator 
and inside the rotor. 

 

(a) 

 

(b) 

 

(c) 

Fig. 25: Temperature and heat flux components distribution in the 
middle of the air-gap. 

 

 

(a) In the θ-direction. 

 

(b) In the r-direction. 

Fig. 26: Temperature in the middle of the first PM. 

 

(a) In the θ-direction. 

 

(b) In the r-direction. 

Fig. 27: Temperature in the middle of the first stator slot. 

 
Fig. 28: Temperature distribution in the middle of the air-gap 

for  220sh W m K  and  2100rh W m K  . 

 

 
Fig. 29: Temperature distribution in the middle of the air-gap 

for  220rh W m K  and  2100sh W m K  . 

0.074 0.076 0.078
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2- Anisotropic Materials 

In the analysis of heat transfer in the inset-PM machine taking 
into account the materials anisotropy, TRNM is used for the 
validation of results. This is due to Fem which use Cartesian 
representation of thermal conductivities [17] and [19]. For the 
dimensions and parameters of the studied machine [see Tables I 
and II] and an anisotropy coefficient equal to 0.5, we represent 
on Fig. 30 the distribution of temperature and heat flux in the 
middle of the air-gap. It can be seen that the temperature in the 
air-gap is higher than in the case of isotropic materials and the 
comparison between the two methods gives very good 
agreement. It is important to note that the anisotropy coefficient 
of materials is applied for rotor and stator iron, slots and PM 
without air-gap. 

A parametric study is performed in this section as a function of 
the anisotropy coefficient (viz.,   0.5, 1, 1.5). When 1  , 

the materials are isotropic and when 0.5   the tangential value 

of thermal conductivity is smaller than the radial value. For 
1.5  , the tangential thermal conductivity is higher than the 

radial conductivity. The temperature distribution at the middle of 
the air-gap, the middle of the PM and the middle of the stator slot 
for different values of   is shown in Figs. 31 ~ 33. It can be 

observed that the heat transfer in the machine is better when the 
tangential thermal conductivity of materials is higher than the 
radial conductivity. In this case, the temperature is lower. This 
remark is valid for the studied case where all materials of the 
machine have the same anisotropy coefficient, which is not true. 
A more realistic study should take into consideration consider the 
real values of thermal conductivity anisotropy in each region 
(i.e., slots, stator and rotor iron cores, PM). Moreover, it is 
important to note that the conductivity in the z-direction of 
rotating electrical machines is mostly affected by materials 
anisotropy and a 3-D study is appropriate. 

 

(a) 

 

(b) 

 

(c) 

Fig. 30: Temperature and heat flux components distribution in the 
middle of the air-gap. 

 

 
Fig. 31: Temperature distribution in the middle of the air-gap using HM. 

 
(a) 

 
(b) 

Fig. 32: Temperature in the middle of the first stator slot using HM. 
 

 
(a) 
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(b) 

Fig. 33: Temperature in the middle of the first PM. 

IV. CONCLUSION 

The prediction of heat transfer in rotating electrical machines is 
usually performed using TEC and Fem. Recently, AM and 
TRNM have been introduced. In this paper, we have proposed 
an improved 2-D AM based on the exact SD technique, TRNM 
and HM for the prediction of steady-state temperature and heat 
flux components in an inset-PM machine with the materials 
anisotropy of thermal conductivity. The models are valid for 
most rotating electrical machines and allow the heat transfer in 
the electrical machine to be determined with very good 
accuracy. In the AM, the EDPs representing heat transfer in the 
electrical machine were solved using the separation of variables 
method with the thermal conductivity anisotropy in both 
directions (viz., r and θ). The implementation of TRNM in 
terms of mesh size, connectivity matrix, global matrix and 
introduction of BCs is presented where its equivalence with 
Fem is highlighted. As in Fem, the accuracy of TRNM depends 
on the adopted mesh and the number of elements. 
For rotating electrical machines, AM can exhibit lower 
accuracy when the number of stator slots and poles is important. 
In this case, the number of ICs in the r- and θ-direction is 
important; the dimensions of SDs and the harmonics number 
are small. TRNM is an alternative to AM in these regions with 
small dimensions and the other regions can be modeled using 
AM. The coupling between the two methods in HM based on 
the discrete Fourier series is presented and validated with Fem 
and TRNM. All results obtained by AM, TRNM and HM are in 
good agreement with each other and with those obtained by 
Fem. 
 

APPENDIX A 

We start with the internal elements of the conductive problem 
example as: 

For k from 1 to 32 do 

 
 1,

1
, (1, )

k isks k

gm k isks k
R R 

 


; 

 
 3,

1
, (3, )

k isks k

gm k isks k
R R 

 


; 

 
 4,

1
, (4, )

kr isks k r

gm k isks k
R R

 


; 

 
 5,

1
, (5, )

kr isks k r

gm k isks k
R R

 


; 

     , (2, ) , (1, ) , (3, ) ..gm k isks k gm k isks k gm k isks k    

                          .. , (4, ) , (5, )gm k isks k gm k isks k  ; 

end do 
 

The equations of thermal convection at the rotor shaft are 
assembled in the global matrix gm  by 

 
For k from 33 to 40 do 

 
 5,

1
, (5, )

kr isks k r

gm k isks k
R R

 


; 

   , (2, ) , (5, )gm k isks k gm k isks k  ; 

end do 

The equations of thermal convection at the ambient air are 
assembled in the global matrix gm by 

For k from 41 to 48 do 

 
 4,

1
, (4, )

kr isks k r

gm k isks k
R R

 


; 

   , (2, ) , (4, )gm k isks k gm k isks k  ; 

end do 

The fixed temperature of 70 ˚C is introduced in the global 
matrix as in Fem by 

For k from 33 to 48 do 

   , , 10 30gm k k gm k k E  ; 

   10 30. 70 273.16f k E  ; 

end do 

APPENDIX B 

We start with the nodes of TRNM representing the rotor slots 
and teeth as 

For k from 1 to nsgr do 
       If k Bdrti then 

           
 1,

1
, (1, )

k isks k

gm k isks k
R R 

 


; 

           
 3,

1
, (3, )

k isks k

gm k isks k
R R 

 


; 

           1
, (4, )

kr

gm k isks k
R

  ; 

          
 5,

1
, (5, )

kr isks k r

gm k isks k
R R

 


; 

           , (2, ) , (1, ) , (3, ) ..gm k isks k gm k isks k gm k isks k    

                          .. , (4, ) , (5, )gm k isks k gm k isks k  ; 

       elif k Bdrto then 

             
 1,

1
, (1, )

k isks k

gm k isks k
R R 

 


; 

             
 3,

1
, (3, )

k isks k

gm k isks k
R R 

 


; 

             1
, (5, )

kr

gm k isks k
R

  ; 

            
 4,

1
, (4, )

kr isks k r

gm k isks k
R R

 


; 

     , (2, ) , (1, ) , (3, ) ..gm k isks k gm k isks k gm k isks k    

                          .. , (4, ) , (5, )gm k isks k gm k isks k  ; 

           elif (k   Bdrto) and (k Bdrti) then 

                 
 1,

1
, (1, )

k isks k

gm k isks k
R R 

 


; 

0.074 0.076 0.078

Radii (m)

116

117

118

119

120

=1
=0.5
=1.5



36                                              K. Boughrara et al.: 2-D Steady-State Heat Transfer Prediction in Rotating Electrical Machines  
 

 

                 
 3,

1
, (3, )

k isks k

gm k isks k
R R 

 


; 

                 
 4,

1
, (4, )

kr isks k r

gm k isks k
R R

 


; 

          
 5,

1
, (5, )

kr isks k r

gm k isks k
R R

 


;        

     , (2, ) , (1, ) , (3, ) ..gm k isks k gm k isks k gm k isks k    

                          .. , (4, ) , (5, )gm k isks k gm k isks k  ; 

        end if 
end do 

The introduction of equations (62) to (64) in the global matrix 
gm is done as follow. (62) is introduced by 

 1, 6 9 1gm nsgb nsgb nn      

   1, 5 8 ln rgm nsgb nsgb nn R      

For j from 1 to ns do 
       k=nodb(1,1,j) 

          1, 1 2. gm nsgb k nn  

end do 

 
21

1
4

r r

rr

q R
f nsgb

l
           

(63) gives 

For n from 1 to nn do 

       
.

1 , 6 9.
rn

r

i

R
gm nsgb n nsgb nn n

R


 

       
 

 

       1 , 5 8. 1gm nsgb n nsgb nn n        

      For j from 1 to ns do 
            k=nodb(1,1,j) 

               cos .
1 , kn

gm nsgb n k
nn


    

      end do 
end do 
 

(64) is added to gm as 
For n from 1 to nn do 

       
.

1 , 6 11.
rn

r
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R
gm nsgb nn n nsgb nn n

R


 

        
 

 

       1 , 6 10. 1gm nsgb nn n nsgb nn n         

      For j from 1 to ns do 

            k=nodb(1,1,j) 

               sin .
1 , kn

gm nsgb nn n k
nn


     

      end do 
end do 
 

There are 360 equations (66) to be introduced in the global 
matrix depending on the number of boundary nodes at rR . 

They are given as 

For j from 1 to ns do 
       k=nodb(1,1,j) 

        
 5,

1
, 5,

isks k r

gm k isks k
R

  

           , 2, , 5,gm k isks k gm k isks k   

         , 5 8. 2.u rrgm k nsgb nn L dl      

          21
2.

2 r u rf k R L q d   

      For n from 1 to nn do 

            , 5 8.gm k nsgb nn n     

                 sin . sin .u rr r k kL n d n dl          

            , 6 9.gm k nsgb nn n     

                 
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R
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            , 6 10.gm k nsgb nn n     

                 cos . cos .u rr r k kL n d n dl          

            , 6 11.gm k nsgb nn n     

                 
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      end do 
end do 
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