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Kinematic Modelling of Humanoid Robot Based 
on Vectorial Approach  

Nacer Hadidi, Chawki Mahfoudi,  Mohamed Bouaziz, Zaharuddin Mohamed, and Ahcene Bouzida

Abstract− The present work is dedicated to the study of the inverse kinematics solution of a humanoid bipedal robot with 
30 degrees of freedom using a newly approach based on vectors that generated from the geometric space of the robot. 
The solutions of  the inverse kinematics problem for all joints articulations are carried out through a simple and linear 
equations. Finally, simulations of results are performed through harmonization of trajectories of end effectors of the 
robot's members. 

Keywords— biped robot, Humanoid robot, inverse kinematics, robotic, vectors calculus. 

NOMENCLATURE 

DKM: Direct Kinematic Model. 
IKM : Inverse Kinematic Model. 
SSP : Simple support phase. 
DSP : Double Support Phase. 
C  i  : cos  i  

S  i  : sin  i  

I. INTRODUCTION 

Robotics has captivated a portion of the scientific community 
due to its alluring prospects across various domains [1]. 
Indeed, robotics has progressed rapidly, transcending what 
was once considered science fiction into reality. Among the 
many branches of robotics, humanoid bipedal robots have 
garnered intense research in recent years [2-4]. Researchers 
continue to tackle challenges in various aspects, striving for 
advancements beyond completed studies. Researchers have 
emphasized various concepts within this domain, including 
mechanical design, kinematic and dynamic 
modeling…etc.Mechanical design aims to create human-sized 
robots with a high degree of freedom within a compact 
volume, presenting a significant challenge [5], [6]. 
Consequentelly, mathematical modeling in robotics makes 
another side of chanllenging, like kinematic modeling. In fact, 
this last one (kinematic modeling) plays a crucial role in 

providing the foundational equations used in robot's dynamics 
and control. 

This paper presents an inverse kinematics study of a bipedal 
robot with a significant number of degrees of freedom (30 
DOF). The robot is devided on six mains parts, each parts is 
modeled in its proper frame. However, this last one is 
reconducted in the principal frame on the robot's hip which 
will be expressed on the global frame. Basically, according to 
the used approach, each angle that represent one degrees of 
fredom is described by three vectors from which should be 
expressed by its magnitude and its rotation sense. 

II. THE MODEL OF THE BIPED ROBOT 

The robot model has 30 degrees of freedom (30 DOF) which 
allow great mobility (Fig. 1). 

The robot structure is divided into 06 main parts: the trunk, the 
neck-head, the upper limbs (right and left arms), and the lower 
limbs (right and left legs). A primary reference frame is fixed 
at the hip. Than, all frames within the robot structure are 
defined according to the Denavit-Hartenberg (DH) convention 
as it is illustrated in Fig. 1. This allows providing the different 
matrices that will be used in the Forward Kinematics (Fk). 
Table 1 summarizes the lengths of the various links of the 
robot.  

 

  
a b 

Fig.1: Robot Model. a. Kinematic diagram of the robot. b. Different 
frames of the robot. 
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Table 1.  
LENGTHS OF ROBOT LINKS 

MECHANISMS ELEMENTS LENGTHES (m) 
Uper limb Fore-arm Lfa = 0.28 

arm La = 0.30 
hand   Lh = 0.10 

Lower limb Leg Ll = 0.30 
Shin Ls = 0.30 
feet Lf = 0.10 

Middle part Trunc LT = 0.30 
Hip LH = 0.10 

Head-neck Head-neck Ln = 0.10 

III. KINEMATIC MODELING OF THE ROBOT 

Kinematic modeling serves as the foundation in robotics, 
known through the Forward Kinematic Model (FKM) and 
Inverse Kinematic Model (IKM).  

A. Forward kinematic Model 

According to DH convention, the transformation from basic 
frame to end-effector is expressed by the following matrix 
given in (1). 

൦

𝑠௫

𝑠௬

𝑠௭

0

𝑛௫

𝑛௬

𝑛௭

0

𝑎௫

𝑎௬

𝑎௭

0

𝑃ௗ௫

𝑃ௗ௬

𝑃ௗ௭

1

൪= 𝑇ଵ
଴  𝑇ଶ

ଵ  𝑇ଷ
ଶ … 𝑇௡

௡ିଵ  

                   =[S N A P] 

    (1) 

Where:  

 [S N A P]: exprime orientation and position of end-effector 
in basic frame.  𝑇௜

௜ିଵ  is a matrix of homogeneous 
transformation between two successive frames (𝑖 = 1 … 𝑛). 
 
B. Principle of the Inverse Kinematic Calculation Approach. 

In this section, we use the new proposed approach that 
established by [7] which is fonded on a vectorial description 
of the robot to solve the IK problem. One of the most useful 
mathematical formula that used to be explored in robotics in 
provinding analythecal solution of variable articulation 𝛽 
(angle) expressed between two vectors, 𝑈ሬሬ⃗  and 𝑉ሬ⃗ ,  is given in 
(2). 

𝛽 = 𝑎𝑡𝑎𝑛2 ቀsin൫𝑈ሬሬ⃗ , 𝑉ሬ⃗ ൯, cos൫𝑈ሬሬ⃗ , 𝑉ሬ⃗ ൯ቁ               (2) 

Subsequentlly, the formula in (2) has an advantage in 
provinding the correct orientation and value of the angle 𝛽 at 
any quadrant of the cercle. In addition, a suitable relation 
between sin൫𝑈ሬሬ⃗ , 𝑉ሬ⃗ ൯ and det(𝑛௎ሬሬሬሬ⃗ , 𝑛௏ሬሬሬሬ⃗ , 𝑛ௐሬሬሬሬሬ⃗ ) is established by [7].  

sin൫𝑈ሬሬ⃗ , 𝑉ሬ⃗ ൯ = det(𝑛௎ሬሬሬሬ⃗ , 𝑛௏ሬሬሬሬ⃗ , 𝑛ௐሬሬሬሬሬ⃗ )                           (3) 

Where:  

𝑛௎ሬሬሬሬሬ⃗ =
௎ሬሬ⃗

௎
, 𝑛௏ሬሬሬሬ⃗ =

௏ሬሬ⃗

௏
  and 𝑛௪ሬሬሬሬሬ⃗ =

௪ሬሬ⃗

௪
   are, respectivelly, unit 

vectors of  𝑈ሬሬ⃗ , 𝑉ሬ⃗  and  𝑊ሬሬሬ⃗ . The vector 𝑊ሬሬሬ⃗   could be the cross 
product of 𝑈ሬሬ⃗ and 𝑉ሬ⃗  or any other orthogonal vector to the plane 
formed by 𝑈ሬሬ⃗ and 𝑉ሬ⃗  (UV-plane). 

A notable characteristic of determinant regarding its sign 
emerges when two columns are swapped [8]. 

det(𝑛௎ሬሬሬሬ⃗ , 𝑛௏ሬሬሬሬ⃗ , 𝑛ௐሬሬሬሬሬ⃗ ) = (−1)det(𝑛௏ሬሬሬሬ⃗ , 𝑛௎ሬሬሬሬ⃗ , 𝑛ௐሬሬሬሬሬ⃗ )  

By knowing, the determinant calculated from the vectors 
concerning the angle and its cosine value, equation (2) fully 
determines the angle, including both its sign and value. Hence, 
equation (2) can be writen as shown in (3) 

𝛽 = 𝑎𝑡𝑎𝑛2 ቀdet(𝑛௎ሬሬሬሬ⃗ , 𝑛௏ሬሬሬሬ⃗ , 𝑛ௐሬሬሬሬሬ⃗ ) , cos൫𝑈ሬሬ⃗ , 𝑉ሬ⃗ ൯ቁ           (3) 

C. Calculation and identification of angles of the bipedal 
robot. 

As mentioned in the introduction, the biped robot is divided 
into 06 parts. Therefore, we proceed to model each one 
separately. 

1) Inverse Kinematic Modeling of the Trunk   

The movement of the trunk is generated by three joint angles 
(Fig.2). 

 
(a) 

 
(b) 

Fig.2: Geometric Description of the Trunk and Shoulder mechanism. a. 
Geometric Modeling of the Trunk. b. Current Position of the Shoulder. 

The joint angle 3  is determined by the following three 

vectors: 𝑝𝑟𝑜𝑗௉೉బೋబ
𝑍ସ
ሬሬሬሬ⃗ ,  𝑍଴

ሬሬሬሬ⃗  et  𝑌଴
ሬሬሬ⃗ . 

Knowing that:  𝑝𝑟𝑜𝑗௉೉బೋబ
𝑍ସ
ሬሬሬሬ⃗ = 𝑍ସ

ሬሬሬሬ⃗ − 𝑝𝑟𝑜𝑗௒బ
𝑍ସ
ሬሬሬሬ⃗ .  is the 

projection of the vector 𝑍ସ
ሬሬሬሬ⃗  onto the plane 

0 0X ZP . 

𝑍ସ
ሬሬሬሬ⃗  is a direction cosine vector of the desired shoulder position 
matrix. 

So, 𝜃ଷ is expressed by (4):  

𝜃ଷ= 𝑎tan2൫𝑑𝑒𝑡ఏయ
,cos 𝜃ଷ൯          (4) 

Where:  𝑑𝑒𝑡ఏయ
= 𝑑𝑒𝑡ൣ𝑍଴

ሬሬሬሬ⃗    𝑝𝑟𝑜𝑗௉೉బೋబ
𝑍ସ
ሬሬሬሬ⃗     𝑌଴

ሬሬሬ⃗ ൧
்
   and  cos 𝜃ଷ =

𝑍଴
ሬሬሬሬ⃗  . 𝑝𝑟𝑜𝑗௉೉బೋబ

𝑍ସ
ሬሬሬሬ⃗  
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Determining the joint angles 𝜃ଵ and 𝜃ଶ involves first 
determining the position of the midpoint (𝑃௡) through the 
matrix giving the desired shoulder position via the following 
relationship : 
 𝑂𝑃௡

ሬሬሬሬሬሬሬ⃗ = 𝑂𝑃௦
ሬሬሬሬሬሬ⃗ − 𝐿௦ 𝐴ସ

ሬሬሬሬ⃗  

Where  
𝑂𝑃௡
ሬሬሬሬሬሬሬ⃗ : Vector expressing midpoint of schoulders. 
𝑂𝑃௦
ሬሬሬሬሬሬ⃗ : Vector expressing schoulder position. 
𝐿௦ : Length of schoulder. 
𝐴ସ
ሬሬሬሬ⃗ : Vector of cosine direction of schoulder's frame on z-axis. 

The angle 
1  is determined by the following vectors: 

𝑝𝑟𝑜𝑗௉೉బೊబ
𝑛௉௡ሬሬሬሬሬሬ⃗ ,  𝑌଴

ሬሬሬ⃗   and  𝑍଴
ሬሬሬሬ⃗ . 

Given that: 𝑝𝑟𝑜𝑗௉೉బೊబ
𝑛௉௡ሬሬሬሬሬሬ⃗ = 𝑛௉௡ሬሬሬሬሬሬ⃗ − 𝑝𝑟𝑜𝑗௓బ

𝑛௉௡ሬሬሬሬሬሬ⃗   it is the 

projection of the vector 𝑛௉೙
ሬሬሬሬሬሬ⃗   onto the plane 

0 0X YP  

Where: 𝑛௉೙
ሬሬሬሬሬሬ⃗  is the unit vector of 𝑂𝑃௡

ሬሬሬሬሬሬሬ⃗  .  

1 = 𝑎tan2൫𝑑𝑒𝑡ఏభ
,cos(𝜃ଵ)൯                (5) 

With :  𝑑𝑒𝑡ఏభ
= 𝑑𝑒𝑡ൣ𝑌଴

ሬሬሬ⃗    𝑝𝑟𝑜𝑗௉೉బೊబ
𝑛௉௡ሬሬሬሬሬሬ⃗     𝑍଴

ሬሬሬሬ⃗ ൧
்
   and  

cos(𝜃ଵ) = 𝑌଴
ሬሬሬ⃗  . 𝑝𝑟𝑜𝑗௉೉బೊబ

𝑛௉௡ሬሬሬሬሬሬ⃗  

Angle 𝜃ଶ  is determined by the following 
vectors: 𝑝𝑟𝑜𝑗௉ೊబೋబ

𝑛௉௡ሬሬሬሬሬሬ⃗ ,  𝑌଴
ሬሬሬ⃗   et  𝑋଴

ሬሬሬሬ⃗  

Given that: 𝑝𝑟𝑜𝑗௉ೊబೋబ
𝑛௉௡ሬሬሬሬሬሬ⃗ = 𝑛௉௡ሬሬሬሬሬሬ⃗ − (𝑝𝑟𝑜𝑗௑బ

𝑛௉௡ሬሬሬሬሬሬ⃗ ). It is the 

projection of the vector 𝑛௉೙
ሬሬሬሬሬሬ⃗   onto the plane 

0 0Y ZP  

𝜃ଶ= 𝑎tan2൫𝑑𝑒𝑡ఏమ
,cos(𝜃ଶ)൯                  (6) 

With:  𝑑𝑒𝑡ఏమ
=  𝑑𝑒𝑡ൣ𝑌଴

ሬሬሬ⃗    𝑝𝑟𝑜𝑗௉ೊబೋబ
𝑛௉௡ሬሬሬሬሬሬ⃗     𝑋଴

ሬሬሬሬ⃗ ൧
்
      and  

cos(𝜃ଶ) = 𝑌଴
ሬሬሬ⃗  . 𝑝𝑟𝑜𝑗௉ೊబೋబ

𝑛௉௡ሬሬሬሬሬሬ⃗  

2)  Inverse Kinematic Modeling of the Neck-Head 
Mechanism 

The movement of the head is governed by the joints 
incorporated at the robot's neck θ4, θ5 and θ6  as shown in Fig.3. 

 

Fig.3: Joints angles of the Neck-Head.mechanism. 

During the robot's movement, the head that is connected to 
trunk at midpoint by the neck with three joint articulations is 
assumed to be on the vertical straight position.  

Therefore, and from Fig.3, the  joints θ5 and  θ6 must 
respectively have the same values as 𝜃ଶ  and  𝜃ଵ of the trunk, 
but in opposite rotation, as expressed in (7). Also, the Joint θ4 
is assumed to be stationary. 

5 2 6 1et                       (7) 

3)  Inverse Kinematic Modeling of the Upper Limb (Arm). 

Fig. 4 depicts a right upper limb with 6 degrees of freedom of 
the bipedal robot distributed among three links: the upper arm 
(𝐿௔), the forearm  (𝐿௙௔), and the hand (𝐿௛) 

 

  

(a) (b) 
Fig.4: Right upper limb of a bipedal robot and assignment of frames 

according to the DH convention. a. Image of the robot arm. b. inematic 
chain of the robot arm [7]. 

 

In this work, the following assumptions are considered: 

- The shoulder, with its 3 degrees of freedom (3DOF), has 
its rotation axes intersecting at the same point. Therefore, the 
rotational movement of the shoulder can be treated as a 
single geometric point. 

- Similarly, the same assumption is applied to the wrist, 
which has 2 DOF. 

 
Fig. 5 depicts a geometric parametrization of the robot 
(geometric entities) that will be used in the process of solving 
the IKM. 
 
The strategy to solve the inverse geometric problem is divided 
into two phases:  

- the first phase involves in determining the geometric 
entities that allowed the determination of the vectors 
defining each joint.  

- The second phase focuses on determining the angles of 
each joint. 
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(a) 

(b) 
Fig.5: Geometric parametrization of a right upper limb of a bipedal 
robot. a. Robot configuration with assignment of main frames. b. 

Geometric entities [7]. 

 

a) Calculation of Geometric Entities of the Robot 

To do this, the following strategy is adopted: 
- Determine the position of the wrist. 
- Determine the position of the elbow. 

The position of the wrist is given by (8). 

𝑂𝑃௪
ሬሬሬሬሬሬሬሬ⃗ = 𝑂𝑃ௗ

ሬሬሬሬሬሬሬ⃗ − 𝐿௛ 𝑆଺
ሬሬሬ⃗                                               (8) 

where: 

𝑂𝑃௪
ሬሬሬሬሬሬሬ⃗ = (𝑃௪௫ , 𝑃௪௬ , 𝑃௪௭  )் and 𝑂𝑃ௗ

ሬሬሬሬሬሬሬ⃗ = (𝑃ௗ௫ , 𝑃ௗ௬ , 𝑃ௗ௭  )் 
respectively are the coordinates of the wrist position and the 
desired position of the end effector (hand). 𝐿௛ is the length 
between wrist and hand. We define the circle of the center 𝑃௪ 
(wrist position) and radius 𝐿௙(forearm length) on the plane Q-
plan that is defined by 

𝑂𝑃௖
ሬሬሬሬሬሬ⃗ = 𝑂𝑃௪

ሬሬሬሬሬሬሬሬ⃗ + 𝐿௙cos(𝜑)𝑆଺
ሬሬሬ⃗ + 𝐿௙sin(𝜑)𝑁଺

ሬሬሬሬ⃗         (9) 

Where: 

𝑂𝑃௘
ሬሬሬሬሬሬሬ⃗ = (𝑃௘௫ , 𝑃௘௬ , 𝑃௘௭)் and 𝑂𝑃௪

ሬሬሬሬሬሬሬ⃗ = (𝑃௪௫ , 𝑃௪௬ , 𝑃௪௭)் are, 
respectively,the coordinates of the circumference of the circle 
and the center of the circle. 𝑆଺

ሬሬሬ⃗   and 𝑁଺
ሬሬሬሬ⃗  are, respectively, the 

unit vectors of the 𝑥଺-axis et 𝑦଺-axis. And 𝜑 is the angle 
between  𝑥଺-axis and 𝑉௪௘

ሬሬሬሬሬሬ⃗   (vector defined by wrist and elbow). 
Thus, from (9), the position of the elbow is determined by the 
vector of coordinates given in (10). 

𝑂𝑃௖
ሬሬሬሬሬሬ⃗ = 𝑉௢௘

ሬሬሬሬሬ⃗ = ൫𝑃௘௫  , 𝑃௘௬  , 𝑃௘௭൯
்
          (10) 

By determining the necessary geometric entities, we proceed 
for identification of joint angles. 

b)  Calculation of Arm Joint Angles 

Geometrically, three vectors (Fig.6), from which two 
mathematical arguments (arg1, arg2) are expressed and will be 
used in (6), describe each joint angle. 

 
Fig.6: Vectorial description of arm's joint angles. 

 

 Joint angle βଵ  

The vectors define the angle: 

𝑝𝑟𝑜𝑗ொೣ೚೥
𝑉௢௘
ሬሬሬሬሬ⃗  , −𝑦଴ሬሬሬሬ⃗  and 𝑧଴ሬሬሬ⃗ .  Given that : 

         𝑑𝑒𝑡ఉభ
= det( − 𝑦଴ሬሬሬሬ⃗ , 𝑝𝑟𝑜𝑗ொೣ೚೥

𝑉௢௘
ሬሬሬሬሬ⃗  , 𝑧଴ሬሬሬ⃗  )  

         𝑐𝑜𝑠(𝛽ଵ) = −𝑦଴ሬሬሬሬ⃗  . 𝑝𝑟𝑜𝑗ொೣ೚೥
𝑉௢௘
ሬሬሬሬሬ⃗   

Hence 

𝛽ଵ = 𝑎tan2൫𝑑𝑒𝑡ఉభ
, 𝑐𝑜𝑠(𝛽ଵ)൯                   (11) 

 Joint angle βଶ 

From Fig.6, 𝛽ଶ can be written as follows: 

 𝛽ଶ =
గ

ଶ
− 𝛾ଶ 

𝛾ଶ is expressed by the formula bellow: 
 𝛾ଶ = 𝑎tan2൫𝑑𝑒𝑡ఊమ

, cos (𝛾ଶ)൯.  

Where 
𝛾ଶ is the angle between 𝑧଴ ሬሬሬሬ⃗  and 𝑉௢௘

ሬሬሬሬሬ⃗  
 

𝑃ௗ 

0X 

0Z 

0Y 

 

𝑃௘ 

𝑃௛  
𝐿௙ 

𝑃௦ 

𝑃௪ 

𝐿௔ 

𝐿௛ 

𝐻 

𝑟 𝐿௛௪ 

𝐿௛௘ 

𝑧଺ 
𝛼ଵ 

𝛼ଶ 

Q-plan  

Cercle of  
radius La   
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𝑧଴ ሬሬሬሬ⃗  𝑎𝑛𝑑 𝑉௢௘
ሬሬሬሬሬ⃗  are, respectivelly, the cosine vector of 𝑧଴-axis of 

fixed frame at schoulder and the vector between schoulder and 
elbow points. 

 

cos(𝛾ଶ) = 𝑧଴ ሬሬሬሬ⃗ . 𝑉௢௘
ሬሬሬሬሬ⃗  and 𝑑𝑒𝑡ఊమ

= 𝑑𝑒𝑡ൣ𝑛௤ଵሬሬሬሬሬሬ⃗  𝑧଴ሬሬሬ⃗  𝑉௢௘
ሬሬሬሬሬ⃗ ൧

்
 

So 

𝛽ଶ =
గ

ଶ
− 𝑎tan2൫𝑑𝑒𝑡ఊమ

, cos (𝛾ଶ)൯            (12) 

 Joint angle  βଷ  

The arguments for the angle 𝛽ଷ are given bellow 

cos(𝛽ଷ) = 𝑛௤ଵሬሬሬሬሬሬ⃗ . 𝑛௤ଶሬሬሬሬሬሬ⃗   and 𝑑𝑒𝑡ఉయ
= 𝑑𝑒𝑡ൣ𝑉௘௢

ሬሬሬሬሬ⃗  𝑛௤ଵሬሬሬሬሬሬ⃗  𝑛௤ଶሬሬሬሬሬሬ⃗ ൧
்
. 

So 

 𝛽ଷ = 𝑎tan2൫𝑑𝑒𝑡ఉయ
,cos(𝛽ଷ)൯                   (13) 

Where 

𝑛௤ଵሬሬሬሬሬሬ⃗  and 𝑛௤ଶሬሬሬሬሬሬ⃗   are respectivelly, the normal vectors of 𝑄ଵ-plan 
and 𝑄ଶ-plan. The first one is defined by two vectors 
𝑧଴ ሬሬሬሬ⃗  and 𝑉௢௘

ሬሬሬሬሬ⃗ . The second one is defined by two vectors 𝑉௢௘
ሬሬሬሬሬ⃗  and 

 𝑉௘௪
ሬሬሬሬሬሬ⃗ .  

 Joint angle βସ 

The joint angle 𝛽ସ is an angle between 𝑉௢௘
ሬሬሬሬሬ⃗   (arm) and 𝑉௘௪

ሬሬሬሬሬሬ⃗   
(forearm) as illustrated in Fig.6. Where 𝑛௢௘ሬሬሬሬሬሬ⃗  and 𝑛௘௪ሬሬሬሬሬሬሬ⃗   
respectively are the normalized vectors of 𝑉௢௘

ሬሬሬሬሬ⃗  and 𝑉௘௪
ሬሬሬሬሬሬ⃗ . 

The arguments for the angle 𝛽ସ are:  cos(𝛽ସ) = 𝑛௢௘ሬሬሬሬሬሬ⃗ . 𝑛௘௪ሬሬሬሬሬሬሬ⃗    

and  𝑑𝑒𝑡ఉర
= 𝑑𝑒𝑡ൣ𝑛௤ଵሬሬሬሬሬሬ⃗  𝑛௢௘ሬሬሬሬሬሬ⃗  𝑛௘௪ሬሬሬሬሬሬሬ⃗ ൧

்
 

So 

𝛽ସ = 𝑎tan2൫𝑑𝑒𝑡ఉర
, 𝑐𝑜𝑠(𝛽ସ)൯                    (14) 

 Joint angle  βହ 

The joint angle 𝛽ହ  is defined between the vectors 𝑛௤ଶሬሬሬሬሬሬ⃗   and 

𝐴଺
ሬሬሬሬ⃗ = (𝑎௫ , 𝑎௬ , 𝑎௭)் of the z6--axis as illustrated in Fig.6. Thus, 
𝛽ହ  is expressed in (15) as follows 

𝛽ହ = 𝑎𝑡𝑎𝑛2൫𝑑𝑒𝑡ఉఱ
, 𝑐𝑜𝑠(𝛽ହ)൯                   (15) 

Where 
  

cos (𝛽ହ) = 𝑛௤ଶሬሬሬሬሬሬ⃗  .  𝐴଺
ሬሬሬሬ⃗  and 𝑑𝑒𝑡ఉఱ

= 𝑑𝑒𝑡ൣ𝑛௪௘ሬሬሬሬሬሬሬ⃗ 𝑛௤ଶሬሬሬሬሬሬ⃗ 𝐴଺
ሬሬሬሬ⃗ ൧

்
. 

 
 

 Joint angle  β଺ 

The joint angle 𝛽଺ is the angle between the forearm and the 
hand of the robot. It is defined by the vectors 𝑉௘௪

ሬሬሬሬሬሬ⃗  (elbow-wrist) 
and 𝑉௪ௗ

ሬሬሬሬሬሬሬ⃗   (wrist-desired position) (Fig.6). Thus, 𝛽଺ is the angle 

between two vectors: 𝑛௘௪ሬሬሬሬሬሬሬ⃗ =
ଵ

ห௏೐ೢሬሬሬሬሬሬሬሬ⃗ ห
𝑉௘௪
ሬሬሬሬሬሬ⃗   and  𝑆଺

ሬሬሬ⃗ = (𝑠௫ , 𝑠௬ , 𝑠௭)். 

Consequently, the two arguments of 𝛽଺ are given below 

cos (𝛽଺) = 𝑛௘௪ሬሬሬሬሬሬሬ⃗  .  𝑆଺
ሬሬሬ⃗  and 𝑑𝑒𝑡ఉల

= 𝑑𝑒𝑡ൣ𝐴଺
ሬሬሬሬ⃗ 𝑛௘௪ሬሬሬሬሬሬሬ⃗ 𝑆଺

ሬሬሬ⃗ ൧
்
. 

Finally, 𝛽଺  is expressed by (16)  
 

𝛽଺ = 𝑎𝑡𝑎𝑛2൫𝑑𝑒𝑡ఉల
, 𝑐𝑜𝑠(𝛽଺)൯                   (16) 

4)  Inverse Kinematic Modeling of the Lower Limb (Leg). 

The leg, with 06 degrees of freedom (right or left), is composed 
of three links that are connected to each other (Fig.7). After 
calculating the position of the ankle and the knee, we proceed 
to identify the joint angles of this latter. 

 

 
Fig.7: Geometric description of θ1 and θ2 

 

 Joint angle  θ1 

The joint angle θ1 can be calculated via (17) using (3) with the 
help of the following three vectors: 𝑂𝑍ሬሬሬሬሬ⃗ , 𝑂𝑌ሬሬሬሬሬ⃗ , 𝑂𝑃௞௫௬

ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ . 

 
11 1tan 2 det , cosa                    (17) 

Where 

1
det det( , , )kxyOZ OP OY  

  
 

1cos cos( , )kxyOP OY  
 

 

𝑂𝑍ሬሬሬሬሬ⃗ = (0,0,1),  𝑂𝑌ሬሬሬሬሬ⃗ = (0,1,0) two units vectors of the hip's 
frame. 
𝑂𝑃௞௫௬
ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = (𝑃௞௫ , 𝑃௞௬ , 0) is the projection of knee's point on xy-

plane that is defined by axes 𝑂𝑋ሬሬሬሬሬ⃗  and  𝑂𝑌ሬሬሬሬሬ⃗  of the hip's frame.   

 Joint angle  θ2   

From Fig.7, these three points: Ph(hip's point) , Pk (knee's 
point) , and Pa (ankle's point) belong to the same plane which 
is initially parallel to XY-plane can move laterally only by the 
joint θ2. 

Therefore, the joint angle θ2.can be calculated by (18) as 
follows 

2 arccos az

ay

P

P


 
   

 
                              (18) 

Where  

൫𝑃௔௫  , 𝑃௔௬  , 𝑃௔௭൯
்
are the coordinates of the vector 𝑉௢௔

ሬሬሬሬሬ⃗  that is 
defined between the origin of hip's frame and the ankle. 
 

 Joint angle  θ3  

From Fig.8, the triangular formula bellow is defined 
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        2 2 2 2 cosha s l s lr L L L L      

Where 
𝑟௛௔ = 𝑃௔௫

ଶ + 𝑃௔௬
ଶ + 𝑃௔௭

ଶ  

 𝐿௦: length of the shin. 

    𝐿௟ : length of the leg. 

From the above equality, the angle 𝛼 (between two links: leg 
and  shin) is expressed in (19) bellow 
 

 
Fig.8: Geometric description of θ3. 

2 2 2

arccos
2

ha tb J

tb J

r L L

L L


  
  

 
                     (19) 

Therefore, from Fig.8 and using (19), θ3 is obtained through 
(20). 

3                                    (20) 

 Joint angle  θ4  and θ5   

A new orthonormal frame 𝐹஺(𝐴, 𝑥஺, 𝑦஺ , 𝑧஺) is defined at ankle 
point, where the position of Lf  will be treated as a case of 
spherical coordinates by θ4 and θ5 (Fig.9). 

Let PQ be the plane by the normal vector  𝑛௞௔ሬሬሬሬሬሬ⃗ = (𝑎, 𝑏, 𝑐)் 
expressed in (21) 

𝑃ொ: 𝑎 𝑥 + 𝑏 𝑦 + 𝑐 𝑧 + 𝐷 = 0                      (21) 

Where 

 𝐷 = 𝑎 𝑃௞௫ + 𝑏 𝑃௞௬ + 𝑐 𝑃௞௭ 

And the constants 𝑎, 𝑏, 𝑐 are the components of normal vector 
𝑛௞௔ሬሬሬሬሬሬ⃗  written in (22) 

𝑛௞௔ሬሬሬሬሬሬ⃗ =
ଵ

ට௏ೖೌೣ
మ ା௏ೖೌ೤

మ ା௏ೖೌ೥
మ

൫𝑉௞௔௫ , 𝑉௞௔௬ , 𝑉௞௔௭൯           (22) 

Given that : 𝑛௞௔ሬሬሬሬሬሬ⃗  : Normal vector of the plane PQ deduced from 
the vector 𝑉௞௔

ሬሬሬሬሬሬ⃗  defined by the points of the knee and the ankle. 

Using (21) and (22), the axes of the new orthonormal frame 
𝐹஺(𝐴, 𝑥஺, 𝑦஺ , 𝑧஺) are defined bellow 

𝑥஺ሬሬሬሬ⃗ = (𝑥1஺ , 𝑥2஺  , 𝑥3஺) : 𝑛௞௔ሬሬሬሬሬሬ⃗ = (𝑎, 𝑏, 𝑐)்: Normal vector of the 
plane PQ 

𝑧஺ሬሬሬ⃗ = (𝑧1஺, 𝑧2஺ , 𝑧3஺): 𝑝𝑟𝑜𝑗௉ೂ
𝑍଴
෢:  Projection of 𝑍଴

෢  onto the 
plane PQ 

 

𝑦஺ሬሬሬሬ⃗ = (𝑦1஺, 𝑦2஺  , 𝑦3஺): Cross product of 𝑝𝑟𝑜𝑗௉ೂ
𝑍଴
෢ and 𝑛௞௔ሬሬሬሬሬሬ⃗  

 

 

Fig.9: Geometric description of θ4 and θ5 into the new frame  𝑅஺(𝐴, 𝑥஺, 𝑦஺, 𝑧஺). 

 
Conseauently, the new frame 𝐹஺(𝐴, 𝑥஺ , 𝑦஺, 𝑧஺) can be 
described into the hip's frame by the following matrix. 

1 1 1

2 2 2

3 3 3

0 0 0 1

A A A Ax

A A A Ay

ha

A A A Az

x y z P

x y z P
T

x y z P

 
 
   
 
  

  

 

Thus, one can express the determination of the coordinates of 
point Pd in the new frame FA as follows 

  0
1

A RR
d ha dP T P

                          (23) 

Finally, from the coordinates  AR
dP given by (23), the 

determination of the rotational joints θ4 and θ5 is carried out 
using the spherical coordinates of the radius Lf, the foot link, 
(or Lad, the length between the ankle and the desired position). 

4

4 5

4 5

cos

sin cos

sin sin

A

A

A

R
dx f

R
dy f

R
dz f

P L

P L

P L



 

 

 
 




  (24) 

Finally, from (24), θ4 and θ5 can be expressed by (25) and 
(26) bellow 

4 arccos
AR

dx

P

P

L


 
  

 
                          (25) 

And 

5 arctan
A

A

R
dz

R
dy

P

P


 
   

 
                          (26) 

 Joint angle  θ6  

The last rotational joint θ6 (See Fig.10) of the leg can be 
obtained through a simple matrix calculation given by (27). 
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Fig.10:  Geometric definition of θ6 of the leg. 
 

0 0 4 5 6
7 4 5 6 7

1 1 16 5 4 0 0
7 6 5 4 7

T T T T T

T T T T T
  



                
 

(27) 

Where  

0
7T : Matrix of the given situation of the end effector (foot 

position). 

0
4T : Matrix of the situation of the frame RA inserted at the 

robot's ankle. This matrix is none other than the matrix 𝑇௛௔ 

 

6
7T :  Transformation matrix between R6 and R7 which is 

expressed by θ6. 

The components of the matrix 𝑇଻
଺  are given below: 

 

6 6

6 66
7

cos sin 0 0

sin cos 0 0

0 0 1

0 0 0 1
P

T
L

 
 

 
 
 
 
 
 

 

Thus, (27) can be reformulated as follows: 

1 1 16 5 4 0
7 6 5 7haT T T T T

  
                        (28) 

By identifying the terms in (28), θ6 can be easily found in (29). 

 6 6 6tan 2 sin , cosa             (29) 

Note. 

Due to symmetry of robot, the same modeling procedure used 
for the right leg will be applied to the left leg. 

IV. PARAMETRICS EQUATIONS OF END-EFFECTOR'S 

TRAJECTORIES 

In order to verify the obtained results of the used approach in 
solving IK problem of biped robot, we plan to conduct 
simulations using Matlab software and leveraging the 
solutions the previously obtained results. However, it is 
necessary to determine the set of trajectories for the various 
members of the robot.  

A. The trajectory of the hip. 

The trajectory of the hip is defined by the three parametric 
equations below: (30), (31) and (32) 

 

Fig.11: Trajectory hodograph of the hip. 

xh(t) : Linear equation on x-axis. 

 hx t at b                                      (30) 

yh(t) : Polynomial equation of degree five in the plane (o:x,y). 

  2 3 4 5
0 1 2 3 4 5hsy t k k t k t k t k t k t         (31) 

zh(t) : Sinusoidal equation in the plane  (o: x, z) 

  0( ) sin ( )zz t A a x t x                (32) 

B. Trajectory of the foot in flight. 

Let pSX (t)  and pdX (t) denote the functions expressing 

respectively the trajectories of the simple support Phase (SSP) 
and the double support phase (DSP). Given that. 

      ( ) : , ,PS ps ps psX t x t y t z t  and 

      ( ) : , ,Pd pd pd pdX t x t y t z t  

Where 

      ,,ps ps pst t tx y z  and       , ,pd pd pdt t tx y z  

denote its parametric equations expressed in the principal 
frame. Howerver, the double support phase represents 20% of 
the single support phase [9]. 
 
xh(t) : Cubic polynomial equation. 

  2 3
0 1 2 3psx t a a t a t a t                 (33) 

yh(t) : Quintic polynomial equation. 

  2 3 4 5
0 1 2 3 4 5psy t b b t b t b t b t b t           (34) 

y(t) 
0R 

0
gR 

z(t) x(t) 
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 zh(t) : no movement of the foot along the z-axis. 

  0pz t                                         (35) 

C. Trajectory of the upper limbs. 

The two upper limbs swing in an alternating and opposite 
manner between a forward and backward movement. (Fig. 12). 

 

 

 
a b 

Fig.12: Hodograph of the robot's upper limbs. 
 

Their parametric equations with respect to the shoulder frame 
are expressed by the following equations 

xm(t) : Linear equation along the x-axis. 

 mx t at b                                (36) 

ym(t) : Cosinusoidal equation 

( ) cos ( )my t R t                        (37) 

Where: 
𝑅 ≤ 𝐿௔ + 𝐿௙௔ 

0 0

2
( )

c

t t
T

    : Linear equation. 

zh(t) : No movement of the foot along the z-axis. 

  0mz t                                       (38) 

Note. 

All the constants in the parametrics equations (30-38) of 
trajectories are detrmined with respect to condition and 
exigences of walk of robot. Primarlly, bellow parameters are 
used: 

PL  : Step length. 

sT  : Step period for the SSP. 

dT  : Step period for the DSP. 

fH  : Maximum height of the flight foot. 

fS  : Corresponding abscissa to fH . 

Hmax and Hmin : Respectively, maximum and minimum 
height of the hip . 

0xH : Hip initial position on x-axis. 

V. SIMULATION OF INVERSE KINEMATIC MODEL OF THE BIPED 

ROBOT 

The simulations are conducted on the bipedal robot to validate 
the IKM solutions obtained previously. The bipedal robot 
should walk correctly by following the trajectories imposed on 
its gait-members (hip, upper limbs, and lower limbs). 

Simulation parameters values. 

 Lengths of links of robot are given in Tab.1.  
 Maximum and minimum height of the hip respectively : 

hmax = 0.69; hmin = 0.66[m] 
 Maximum foot height in flight: Hf = 0.10[m]. 
 One-step period : Tp=Ts+Td =1.3+0.3 =1.6[s] 
 Average time corresponding to Hf : Tm =Ts / 2[s] 
 Step length: Lp = 0.32[m]. 
 Final position of the hip in DSP : 

     xfH = 0.5.Lp+
0xH . [m] 

 

 
a 

b 
Fig.13: Simulation of the inverse kinematic model of the robot 

(IKM). a. simulation of a single step. b. simulation of six successive 
steps. 

These simulations, depicted in Fig.13, demonstrates that the 
developed solutions in solving IKM presented above is correct 
and accurate. 

VI. GENERAL CONCLUSION 

An attractive and basic topic in robotics was developped in this 
work. An application on biped robot with 30 degree of freedom 
was presented. Topologically, this robot consists of a central 
mechanism (the trunk), two upper limbs (right arm and left 



ENP Engineering Science Journal, Vol. 4, No. 1, July, 2024                                                                                                  43 
 

 

arm), two lower limbs (right leg and left leg), and a neck-head 
mechanism. 

This work extends to inverse kinematic modeling by 
employing an alternative approach based on vectors and the 
geometric environment of the robot. This approach offers a 
significant advantage in obtaining solutions through linear and 
uncoupled equations. In fact, all joint variables of the bipedal 
robot with 30 degrees of freedom are determined using this 
approach. Simulations were conducted and the obtained results 
align with the expected goals. Thus, this work contributes to 
the advancement of knowledge in the field of robotics.  
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