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A New Multi-Path Hybrid Classifier for
Transformer Oil Fault Diagnostic

Youcef Benmahamed, Omar Kherif, Sofiane Chiheb, Madjid Teguar, Sherif Ghoneim and Ahmed Boubakeur

Abstract—This work aims to provide advances in diagnosis algorithms using intelligent techniques and represents
an application in fault detection and classification in oil-immersed power transformers. The paper proposes a new
methodology of classification using hybrid algorithms to describe an improved DGA diagnostic tool based on combining
different classifiers and several input vectors. A total of six classes of electrical and thermal faults are labeled. For each
fault, binary classifications are first conducted using two classifiers trained and evaluated using nine different input
vectors. For this, a dataset of 501 samples is used, and the best pairs (classifier, input vector) are selected for each given
binary classification. From these pairs, different hybrid classifiers are proposed. Each classifier reaches its outcome
through an independent pathway, and these classifiers together form the proposed multi-path hybrid classifier. The final
decision of this classifier is obtained from the decisions made at the output of each path. This application brings a global
accuracy rate of up to 95% for the transformer oil diagnosis, demonstrating the proposed technique’s effectiveness in
the classification field. The proposed model and other conventional algorithms are compared using a small independent
database of twenty elements..
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NOMENCLATURE

DGA Dissolved Gas Analysis.
KNN K-Nearest Neighbor.
SVM Support Vector Machine.
DT Decision Tree.

I. INTRODUCTION

The continuous and reliable operation of electricity is one of
the main challenges of power companies, from generation to
transmission and distribution. In this chain, power transformers
play an essential role for the target. Numerous studies were con-
ducted to investigate the impact of faults in power transformers
as well as to develop and/or improve resolution techniques to
prevent such faults (e.g., [1–4]). Studying more than 340 power
transformers with a voltage rate from 33 to 400 kV, authors
in [5] stated that insulation problems are the most common fault,
accounting for 37% of power transformer failures.

Mineral insulating oil is the most common oil used in outdoor
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transformers. This oil is characterized by its significant dielec-
tric strength to withstand a fairly high voltage. It also helps
to reduce heat generated by transformer windings. Indeed, oil-
immersed transformers’ lifetime can be governed by the state of
the insulation system. This latter is generally exposed to some
defects arising from overheating, paper carbonization, arcing,
and discharges of low or high energy [4, 6, 7]. Evaluation pro-
cedures and relevant tests of these oils can be found within the
recommendations of [8, 9].

Dissolved Gas Analysis (DGA) method is one of the most ef-
fective methods used in the field of faults detection within oil-
immersed power transformers [10, 11]. This method analyzes
the concentration of gases liberated in the transformer oil. Dif-
ferent hydrocarbon gases are released due to insulating oil and
paper decomposition under electrical and thermal stresses.

In general, the most important gases, in alphabetical order, are
Acetylene (C2H2), Ethane (C2H6), Ethylene (C2H4), Hydro-
gen (H2), and Methane (CH4). A particular combination of
gases characterizes each type of fault within transformer oil.

Some of the application of DGA methods can be summarized as
follows; i) DGA identifies different transformer fault types, due
to different thermal, electrical, and mechanical stresses on the
insulating oil. Each fault produces a specific pattern of gases
that can be detected through DGA. ii) DGA detects faults early
before leading damage to the transformer, so it helps prevent
costly repairs and downtime. iii) Monitoring changes in gas
levels over time provides a trend analysis that helps predict
future faults and plan maintenance activities accordingly. iv) it
provides an overall assessment of the transformer’s condition
through analyzing various gases and their levels, which helps in
determining whether the transformer is operating within normal
limits or needs maintenance. v) it also helps to locate the fault
within the transformer by analyzing the distribution of gases
within different parts of the transformer. So, it is a powerful tool
for transformer fault diagnosis [12, 13].
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The dissolved gases produce under the electrical, thermal, and
mechanical stresses. For instance, Ethylene is related to hotspots
between 150 C and 1000 C, and acetylene is associated with arcs
where temperatures reach a few thousand degrees. Furthermore,
partial discharges in transformer oil can result in a considerable
increase in hydrogen concentration because of the ionic bom-
bardment [13]. Six classes of faults are widely considered in
this field, namely partial discharge (PD), low energy discharges
(D1), high energy discharges (D2), thermal faults < 300 C (T1),
thermal faults of 300 C to 700 C (T2), and thermal faults > 700
C (T3).

The literature surveys indicated some shortcomings of using
DGA for transformer fault diagnosis. In some cases, the dis-
solved gases amount is not sufficient to refer the exact trans-
former fault type and it can produce false positives, where the
normal aging or environmental factors increase the gas levels
producing false results [15]. The nonlinearity of the data sam-
ples can also lead to incorrect of transformer fault type. DGA
Data sample processes consume time, effort and cost [16]. The
accuracy of DGA results influences by other factors such as the
quality of the oil sample, the sampling technique used, and the
laboratory analysis method [17]. Due to wrong diagnosis of
the specific transformer fault types, it is difficult to determine
the appropriate maintenance or repair actions [18]. Interpret-
ing DGA results requires specialized knowledge and expertise,
which may not be readily available to all users [19].

In literature, different techniques have been developed to di-
agnose transformer faults. These techniques include graphi-
cal DGA methods (e.g., [20, 21]) and intelligent techniques
(e.g., [22–24]). In addition, improved techniques (coupled meth-
ods) have also been created to accurately diagnose transformer
faults (single and/or multiple faults) and indicate each fault’s
likelihood quantitatively (e.g., [23–26]). Arranging the input
data of the DGA methods can affect on the DGA results. There-
fore, many researchers have focused on developing input vectors
that can enhance the DGA results to diagnose transformer faults
correctly [4, 7, 27, 28].

This work describes an advanced classification methodology
using a combination of different input vectors and various classi-
fiers, and an application is presented to enhance the transformer
fault diagnostic accuracy based on DGA. Furthermore, hybrid
algorithms are proposed to improve DGA diagnostic tools. From
a total dataset of 501 samples, 481 are used to train and test the
proposed models, where six electrical and thermal fault classes
are labeled. As main result, it was found that the global accu-
racy rate, reaching 95% for the power transformer diagnosis,
demonstrates the effectiveness of the proposed technique.

The paper is organized as follows: the proposed methodology
is presented in a Section to provide a general overview and a
reference point for different applications. Section III covers the
selected classifiers and input vectors for the transformer oil fault
diagnosis. The dataset is also presented in this section. Results
and discussions are shown in Section IV. The results obtained
and compared with other classifiers are shown at the end of this
section. The paper finalizes with conclusions and perspectives.

II. PROPOSED MULTI-PATH HYBRID CLASSIFIER

A. Geeral principal

In [27], the authors proposed several input vectors to train and
assess a KNN classification algorithm based on a decision tree
principle. The work was conducted to select the best input
vector to achieve a high-accuracy diagnosis for the transformer
faults. The accuracy rate has been analyzed to choose the most
appropriate input vector for the proposed method. The obtained
results were fascinating compared to conventional techniques
of classification. Therefore, the idea is generalized in this work
and introduces a new technique. This technique uses multiple
classifiers, and the final decision is determined by an election
(e.g., high number of appearances). Figure 1 shows the chart of
the proposed technique.

The first step involves selecting an M number of different clas-
sifiers according to the desired application. The parameters
associated with each classifier should be defined and adjusted
for the application. Then, a set of criteria should be established
to define the best pair’s characterization. For instance, the sim-
plest criterion represents the pair with the highest accuracy rate
or an accuracy rate higher than a given value. Finally, a K num-
ber of criteria should be selected, and this number will affect the
number of paths in the proposed multi-path hybrid classifier.

Fig. 1: A general structure of the proposed methodology.

As shown in Figure 1, the next step consists of generating dif-
ferent input vectors from the same dataset. The collected data
generates various modified datasets, grouping the M input vec-
tors. Taking into account the transformer oil fault diagnosis,
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for instance, the original data represents the first input vector,
which consists of the concentration of gases in parts per million
(ppm). A second input vector may be the relative concentration
of each gas compared to the sum of concentrations. It should be
noted that the input vector generation is a process that depends
on the data where the data transformation should be established
to make the data more separable and easier to use in the classifi-
cation process. A detailed example of the selected input vectors
is presented in Section III.

It is important to note that the selected combinations together
help with the identification of various possible pathways. There-
fore, the combination of these pathways represents the proposed
multi-path hybrid classifier where the final decision is obtained
from pre-defined criteria as shown in the forthcoming parts.

B. Pairs and paths selection

Each classifier is trained and evaluated by all the selected input
vectors using the dataset defined for the testing process. Several
techniques can be adopted for this phase, such as a binary clas-
sification based on the decision tree principle and multicategory
classification. Figure 2 shows two possible scenarios for the
classification process.

(a)

(b)

Fig. 2: Best combination identification process:(a) Multiclass
condition,(b) Binary condition.

A decision tree principle can be considered in both scenarios,
representing a branched flowchart with two or multiple pathways
for potential decisions. For a given classifier, the tree starts with
a decision node, which implies a decision must be made. For the
multiclass scenario in Figure 2(a), a branch is created from the
decision node where the obtained decision might successively
run to another decision. For the second scenario, the process
is simple by applying a “one vs. all” strategy. This means that

each dataset is used to train and evaluate a given classifier about
two classes of faults denoted by Class 1 and Class 2 as shown
in Figure 2(b).

As an application in transformer oil diagnosis, for instance,
Class 1 (=Fi) might be used to refer to one of the six faults in
transformer oil (i.e., PD, D1, D2, T1, T2, and T3). In this case,
Class 2 (=Xi) should represent a complementary class depending
on the classification (i.e., Xi = PD, D1, D2, T1, T2, and T3 – Fi).
A binary classification is considered by selecting this process,
which means two decisions can be obtained on the output of
each classifier. It will help identify the appropriate input vector
and classifier for binary classification. Figure 3 demonstrates
the proposed process to determine the best combination vector-
classifier to create paths for the global hybrid classifier.

Fig. 3: Best pair selection process.

Figure 3 shows that the training and testing processes are con-
ducted using input vectors applied to various classifiers. Indeed,
many tests should be conducted so that the accuracy rate of each
binary classification can be obtained as a function of the selected
classifier and input vector. Therefore, this process helps identify
the possible paths for global classification. Figure 4 illustrates
a typical structure of the proposed technique used to determine
the global accuracy rate of any path.

The best pairs selection process allows the creation of a hybrid
classifier with one possible decision. This hybrid classifier, the
denoted path, is not unique; different proposals can be made
according to the desired accuracy rate. Eventually, each pathway
reaches an outcome by passing through different classifiers and
elaborating various input vectors. A combination of these deci-
sions offers a trusted outcome that is generated from the result
of the selected pathways, especially once the same outcome is
obtained for different paths.

It is worth noting that the proposed multi-path hybrid classi-
fier can be used in various classification problems, including
multi-input multi-output classification (MIMO-C) systems. In
addition, different scenarios can be generated from the proposed
structure according to the output classes for a given situation.

III. INPUT VECTOR AND CLASSIFIER

In this work, nine input vectors have been used to train and test
different classifiers, where the best combination (classifier and
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Fig. 4: General structure of the proposed classifier.

input vector) is selected for the considered binary classification.
Indeed, pre-classification is first adopted to recognize the first
three best combinations (input vector and classifier) that gives
the highest accuracy rate where a database of 501 whose 481
samples were reserved the process of training and testing. Table
I gives the distribution of the training and testing samples ac-
cording to their identified fault type. Additional twenty samples
(shown in Section IV.) have been used to examine the validity
of the proposed classifier.

As the Authors in [18] detailed, the 481 samples were collected
from different sources where gas concentration values were
observed in service for faulty equipment inspected in service.
The database is mainly collected from relevant publications
(e.g., [29]) and Egyptian Electric Utility (Report [30]). Data are
collected from [31] and [32] for the twenty samples used for
validation.

A holdout method is used for the dataset decomposition based
on the well-known decomposition (2/3 for training and 1/3 for

Table. I
DISTRIBUTION OF SAMPLES OVER FAULT TYPES

Symbol Training Testing Total

PD 32 16 48
D1 53 26 79
D2 84 42 126
T1 63 32 95
T2 32 16 48
T3 57 28 85

Total 321 160 481

testing). Although the dataset is unbalanced, the authors ran-
domly assign sample sets for each class by 2/3 in the training
phase, and by 1/3 in the testing phase. In this way, one can
ensure that the existence of each class in the training and testing
processes – proportionally by its initial dimension. This scenario
helps with the reduction of the potential risk of each classifier.
Therefore, 321 samples have been randomly selected for the
training phase and 160 samples for the testing. Among other
data mining methods, three classifiers have been considered as
follows:

• Support Vector Machine (SVM)

• K-Nearest Neighbor (KNN)

• Decision tree (DT)

As mentioned previously, a binary classification has been in-
dependently developed for all of the classifiers. In order to
simplify the comparison process and avoid going inside the
algorithms, MATLAB toolboxes have been used for the applica-
tion. These toolboxes are exploited to use the SVM, KNN, NB,
DT classifiers. Details of each are available online on [33–35].

It is well-known that many interpretative methods based on
DGA were reported to detect the incipient fault nature within an
oil-immersed power transformer. These mainly include, as input
vectors, the concentration of the dissolved gases in ppm, relative
concentration of gases in percentage, IEC ratios, Rogers four-
ratios, Dornenburg ratios, Duval triangle coordinates, Duval
pentagon coordinates, a combination of Rogers and Dornenburg
ratios, and a combination of Duval triangle-pentagon coordi-
nates as follows:

V1 Concentrations of the gases in parts per million
V2 Percentage to the total sum
V3 IEC ratios
V4 Rogers four-ratios
V5 Dornenburg ratios
V6 Duval triangle coordinates
V7 Duval pentagon coordinates
V8 Rogers and Dornenburg ratios
V9 Duval triangle-pentagon coordinates

It should be noted that more details about these input vectors
and their formulation are reported in a previous work [25].
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Table. II
CLASSIFICATION RESULTS FOR TWO DIFFERENT CLASSIFIERS FOR 10 SAMPLES OF PD CLASS

SAMPLE
ACTUAL
CLASS

PREDICTED CLASS

KNN SVM
V1 V2 V3 V4 V5 V6 V7 V8 V9 V1 V2 V3 V4 V5 V6 V7 V8 V9

PD-1 PD PD PD PD D1 PD PD PD PD PD PD PD D2 PD PD D1 PD D2 PD
PD-2 PD PD PD PD PD PD T3 PD T1 PD PD PD PD PD T1 D1 PD PD PD
PD-3 PD PD PD PD PD PD T3 PD PD PD PD PD PD PD PD T3 PD D2 PD
PD-4 PD PD PD PD T1 PD T1 PD T1 PD PD PD PD PD T3 PD T3 T2 PD
PD-5 PD PD PD PD PD PD PD PD T3 PD PD PD D2 PD PD D1 PD D2 PD
PD-6 PD PD PD PD PD T1 T3 PD T1 PD PD PD PD PD PD D1 PD D2 PD
PD-7 PD PD PD D1 PD PD T3 PD PD PD PD PD PD PD PD T3 PD D2 PD
PD-8 PD PD PD PD PD PD T3 PD T1 PD PD PD PD PD T2 T3 PD PD PD
PD-9 PD PD PD PD PD PD T3 PD T1 PD PD PD PD PD PD T1 PD D2 PD

PD-10 PD PD PD T1 PD PD T2 PD D2 PD T1 T1 PD PD T3 T3 T3 T1 PD

Table. III
CLASSIFICATION RESULTS FOR TWO DIFFERENT CLASSIFIERS FOR 10 SAMPLES OF D2 CLASS

SAMPLE
ACTUAL
CLASS

PREDICTED CLASS

KNN SVM
V1 V2 V3 V4 V5 V6 V7 V8 V9 V1 V2 V3 V4 V5 V6 V7 V8 V9

D2-1 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D1 D2 D2 D2 D2 T1 D2 D2 D2
D2-2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 T3 D2 D2 D2
D2-3 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 T3 D2 D2 D2
D2-4 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D1 D2 D2 D2 D2 D2 D2 D2 D2
D2-5 D2 D2 D2 D2 D2 PD D2 D2 T1 D2 D2 D2 D2 D2 D2 D2 D2 D2 T1
D2-6 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D1 D2 D2 D2 D2 T3 T2 D2 D2
D2-7 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D1 D2 D2 D2 D2 T3 T2 D2 D2
D2-8 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D1 D2 D2 D2 D2 T1 D2 D2 D2
D2-9 D2 D2 D2 D2 D2 PD D2 D2 PD D2 D2 D2 D2 D2 D2 T1 D2 D2 D2

D2-10 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2 D2

IV. RESULTS AND DISCUSSIONS

This section provides the obtained results when applying the
proposed classification methodology. A binary classification
is presented, and the corresponding results are discussed to
identify the hybrid classifiers. Secondly, an example of a multi-
path hybrid classifier is presented and discussed. Finally, the
obtained results along with a comparison with other classifiers
are shown.

A. Binary classification and pair selection

The proposed methodology’s first step is finding the best pairs
(classifier, input vector) from each binary classification. A set
of 481 samples has been used for the training and testing stages,
two-thirds of the samples were reserved for training phase and
one-third for testing utilizing the MATLAB’ functions. Ta-
ble II illustrates a brief description and example of the binary
classification results using two different classifiers (KNN and
SVM) and considering the nine input vectors (V1 to V9). The
classification results in this table consider only the PD class of
faults where ten samples are selected arbitrary to examine the
existence of best pairs.

From the results obtained, one can clearly see that the classifier

selection and the input vector are key factors in the classification
purpose. For the same classifier, different decisions are obtained
when considering different input vectors. The correct decision
is obtained from both classifiers when using the input vector V9.
Vectors V1 and V2 allow obtaining 100% accuracy with KNN
against 90% with the SVM classifier.

Likewise, one can see that vector V4 is effective with SVM
classifier since all obtained decisions are correct, which is not
the case when considering the KNN classifier. Regarding correct
decisions, the KNN classifier shows a ratio of 70/90 against
63/90 for the SVM classifier. It can be explained by the fact that
the KNN classifier is more suitable for such a classification than
the SVM and the selected input vectors.

Overall, the results can be summarized in the fact that the pair
(classier, input vector) considerably impact the obtained deci-
sion of a classification. In order to examine such conclusions,
different samples are considered where the same analysis is
conducted. Table III gives the obtained results using the two
classifiers and considering the nine input vectors for D2 faults.

Compared to the results in Table II, the decisions for the second
classification in Table III show a higher accuracy rate when
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using the D2 fault. It may imply that conclusions on a specific
pair (classifier, input vector) applied to a given class of faults
cannot be generalized to other classes. For instance, input vector
V6 with KNN classifier gives an accuracy rate of 100% for D2
classification against 20% for PD one.

Regarding the SVM classifier, one can see from Tables II and
III that input vector V8 is suitable for distinguishing D2 from
the PD fault. Therefore, each classification should be associated
with one or more pairs (classifier, input vector) to provide a high
accuracy classification decision. The testing data consists of 160
samples, which all group the six defined classes of faults. Table
IV calculates the accuracy rate for the two classifiers using the
nine input vectors.

The results show accuracy rates varying between 0 and 100%
for different classifiers and input vectors. For instance, one
can identify the pair (KNN, V9) as the best for classifying the
PD fault while the pair (SVM, V6) is the worst for the same
fault class. Regarding T1 fault, the best pair is (SVM, V2) and
the worst is (KNN, V8). Based on the overall results, one can
conduct binary classifications considering tree decision principle
where the best pair shall be used in each stage to provide the
best decision at the end of the classification process.

It is worth noting that the classification can be made with dif-
ferent input vector/classifier combinations. Therefore, not only
a single path that could exist, but one can define several paths.
Thus, a multi-path hybrid classifier should be considered as
described in the following section.

B. Multi-path hybrid classifier

Based on the results, numerous paths can be proposed using
combinations between faults classified in Table IV in descending
order.

Table. IV
ACCURACY RATE FOR DIFFERENT INPUT VECTORS

Accuracy rate using KNN (%)
PD D1 D2 T1 T2 T3

V1 93.75 80.77 90.48 87.50 75.00 96.43
V2 93.75 76.92 97.62 87.50 75.00 96.43
V3 75.00 50.00 78.54 93.75 75.00 85.71
V4 62.50 53.85 78.54 71.88 81.25 85.71
V5 87.50 11.54 71.43 03.13 06.25 10.71
V6 37.50 23.08 85.71 78.13 37.50 71.43
V7 93.75 73.08 95.24 90.63 75.00 92.86
V8 18.75 11.54 88.10 00.00 00.00 14.29
V9 100 76.92 90.48 87.50 93.75 92.86

Accuracy rate using SVM (%)

V1 87.50 88.46 83.33 87.50 43.75 96.43
V2 93.75 80.77 90.48 96.88 87.50 89.29
V3 93.75 11.54 35.71 71.88 37.50 89.29
V4 25.00 73.08 28.57 90.63 00.00 00.00
V5 75.00 46.15 83.33 75.00 62.75 00.00
V6 00.00 00.00 88.10 84.38 00.00 82.14
V7 87.50 73.08 92.86 90.63 68.75 92.86
V8 68.75 03.85 97.62 71.88 87.50 00.00
V9 93.75 76.92 92.86 93.75 81.25 92.86

The straightforward way is to consider the same pairs for the
classification. It means that one can create a multi-path classifier
without hybridization in each single path (i.e., the same classifier
and input vector for a given path). Eighteen classifications
have been considered using two classifiers and nine different
input vectors. In this case, the corresponding accuracy rates are
summarized in Table V.

Table. V
ACCURACY RATE FOR DIFFERENT CLASSIFICA-

TION PATHS

ACCURACY RATE (%)
KNN SVM

V1 88.13 83.75
V2 89.38 89.38
V3 77.50 48.75
V4 73.13 33.75
V5 32.50 60.00
V6 61.88 57.50
V7 88.13 86.25
V8 29.39 56.25
V9 89.38 90.00

As can be seen in Table V, some input vectors give good accu-
racy rates for both classifiers (e.g., V1, V2, V7 and V9) whilst
a low accuracy rate is obtained if one changes the classifier for
some input vectors (e.g., V3 with KNN and V3 with SVM).
The best results in the considered case are obtained for an input
vector V9 and SVM classification. In addition, using V2 with
both classifiers results in an accuracy rate of 89.38%. The same
result is obtained from different paths when the input vector V9
is used with KNN classification. Overall, better results may be
obtained if one can study furthermore this hybridization.

From the results in Table V, one can create a multi-path classi-
fication where the final decision is taken from those decisions
calculated at the output of several paths.

Table. VI
ACCURACY RATE FOR DIFFERENT MULTI-PATH

CLASSIFIERS

SPECIFICATION ACCURACY
CLASSIFIER INPUT RATE (%)

Path 1 SVM V9 -
Path 2 SVM V2 -
Path 3 KNN V1 -

Multi-path 1–3 - - 90.00
Path 4 KNN V7 -
Path 5 KNN V9 -

Multi-path 1–5 - - 92.50
Path 6 SVM V1 -
Path 7 KNN V2 -

Multi-path 1–7 - - 91.88
Path 8 SVM V7 -
Path 9 KNN V3 -

Multi-path 1–9 - - 91.88

As a simple example, the number of paths is increased, and the
final decision is made for different scenarios. Four different
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multipath classifiers have proposed where the number of paths
is increased from classifier to another as follows:

• Multi-path Classifier 1: Paths 1, 2 and 3.

• Multi-path Classifier 2: Paths 1, 2, 3, 4 and 5.

• Multi-path Classifier 3: Paths 1, 2, 3, 4, 5, 6 and 7.

• Multi-path Classifier 4: Paths 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Multipath classifier 1 groups three different paths (Paths 1, 2
and 3). Path 1 is the classification using SVM classifier with the
input vector V9. Path 2 is the classification using the SVM and
V2.

In general, the described paths and the obtained accuracy rates
are given in Table VI where the final decision for each multipath
classifier is selected from the outputs of the different paths.

In this table, the criterion for selecting final decision consists of
selecting the decision with higher recurrence, which is obtained
from the paths’ decisions. In case of equality or difficulties in
the selection, the criterion consists of prioritizing the decision
of the best path (usually the first one has higher accuracy rate
compared to the others).

Table. VII
COMPARISON BETWEEN THE PROPOSED ALGO-

RITHM AND OTHER RELEVANT METHODS

H2 CH4 C2H6 C2H4 C2H2 ACT
IEC-
60599

Roger’s
4 ratios Duval TKNN TSVM DT-V4 MPH

1 1230 163 27 692 233 D2 D2 UD D2 D1 D2 D2 D2
2 120 10 30 25 5 D1 PD UD T3 D1 PD D1 D1
3 3700 6400 2400 10 7690 T2 UD UD D1 T2 T3 T1 T2
4 6 2990 29990 67 26076 T1 UD D1 T1 T1 T1 T1
5 34 21 4 56 49 D2 D2 D2 D2 D2 D2 D2 D2
6 120 140 30 0 120 T1 UD UD D1 T1 T2 T1 T1
7 240 17 0 5 40 PD UD UD D1 PD PD PD PD
8 6454 2313 121 6432 2159 D2 D2 UD D2 D2 D2 D2 D2
9 650 53 20 0 34 PD UD PD D1 PD PD PD PD

10 125 680 290 20 900 T3 UD UD D1 T3 T3 T1 T3
11 1076 95 71 231 4 PD UD UD T3 PD PD PD PD
12 140 95 10 80 60 D2 D2 D2 D2 D2 D2 D2 D2
13 300 700 280 36 1700 T3 UD UD D1 T3 T1 T3 T3
14 960 4000 1290 6 1560 T2 UD UD D1 T2 T1 T2 T2
15 1450 940 211 61 322 T1 UD UD D1 T1 T1 T1 T1
16 2500 10500 4790 6 13500 T2 UD UD D1 T2 T1 T2 T2
17 305 100 33 541 161 D1 D2 UD D2 D2 D2 D1 D2
18 796 999 234 31 1599 T3 UD UD D1 T3 T1 T3 T3
19 37800 1740 249 8 8 PD PD PD PD PD PD PD PD
20 33046 619 58 0 2 PD UD PD PD PD PD PD PD

5/20 5/20 6/20 18/20 12/20 18/20 19/20
ACCURACY RATE (%) 25 25 30 90 55 90 95

ACT: ACTUAL CLASS OF FAULT UD: UNDETERMINED

It should be noted that the selection criteria can affect the output
of the multipath classifiers. It could be another paper’s subject
since different factors may contribute to the final decision. For
instance, it was found that the number of paths used in the mul-
tipath classifier considerably impacts the final decision. Figure
5 shows the obtained accuracy rate as a function of the number
of paths.

Fig. 5: Accuracy rate as a function of number of paths.

The results indicate that the number of the selected paths is a
sensitive factor for creating a multi-path hybrid classifier. A
higher number of paths may reduce the effectiveness of the
classifiers.

Therefore, an appropriate selection should be adopted where
optimal choices of classification algorithm with appropriate
input data should be considered to diagnose transformer faults
better.



36 Youcef Benmahamed et al.: A New Multi-Path Hybrid Classifier for Transformer Oil Fault Diagnostic

Therefore, an appropriate selection should be adopted where
optimal choices of classification algorithm with appropriate
input data should be considered to diagnose transformer faults
better.

C. Independant data and validation

A dataset of 20 new samples tests different classifiers for the
validation and comparison stages, including conventional ones
(IEC-60566 method, Roger’s ratios and Duval triangle).

A total of seven classifiers are considered as shown in Table VII
which gives the decisions of different classifiers along with the
accuracy rates. The classifier MPH is a multi-path hybrid clas-
sifier that combines three paths–TKNN (as best path), TSVM
and DT-V4. TKNN is a hybridization between the decision tree
and the KNN classifier whilst TSVM is similar hybridization
using SVM with Decision tree principle as studied in a previous
work [26]. DT-V4 is a classification using DT classification
using the input vector V4. It should be noted that the selection
here is just an example and an infinite number of choices can be
considered.

The results show that the MPH improved the diagnosis results
(95 %) compared to other conventional techniques and single-
path classifiers. Therefore, the proposed methodology can help
classify faults in oil-immersed power transformers by providing
a better accuracy rate than conventional diagnostic techniques.

V. CONCLUSION

A study on transformer oil diagnosis using DGA has been made
in this paper using 501 samples to provide an advance in the
field. The pioneer classifiers SVM and KNN have been used
with different input vectors to understand the pair “classifier,
input vector” effect on the diagnostic accuracy. For a given
sample, the decision is based on the use of a vote on the results
of the two algorithms (SVM and KNN) through the injection of
several input vectors. Analyzing the results, classification paths
were considered, where multiple paths were combined to form
a new multi-path hybrid classifier. This strategy can be more
practical for improving the diagnosis of power transformer oil
than using the classical way when employing a single classifier
and a unique input vector. Enrichment in the input vector crafted
the classifier to reduce the percentage of misdiagnosis and the
hybridization with another classifier made a strong decision on
the state of the sample. Hybridizing several algorithms and input
vectors can effectively diagnose the power transformer fault.
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