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Blind Bilinear Approach for Nonlinear-Based
System Identification

Abdulmajid Lawal, Karim Abed-Meraim, Azzedine Zerguine, and Ali Muqaibel

Abstract—In this paper, we develop an efficient nonlinear channel identification method for single input multiple output
finite impulse response (FIR) channels. The developed algorithm utilizes the structure embedded in the columns and
rows subspaces of the received signal matrix. Both the Toeplitz structure available in the signal matrix and the block
Sylvester structure present in the channel matrix is used to develop a criterion that can be minimized to establish the
optimal solution of the channel estimates. With nonlinearity in the system, the proposed bilinear nonlinear approach
produces some extremely intriguing channel estimation findings.
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NOMENCLATURE

This section includes the abbreviations used in the manuscript:

FIR Finite Impulse Response.
SIMO Single Input Multiple Output.
SCS Structured Channel Subspace
BSCS Nonlinear Biliear Structured Channel Subspace.
LBSCS Linear Biliear Structured Channel Subspace.

I. INTRODUCTION

Many practical systems have inherent nonlinear behaviors which
necessitate the use of dedicated processing especially when such
nonlinearities can significantly impact the input signal restora-
tion [1, 2]. The analysis and solutions to nonlinear problems
have attracted different specialties such as engineers, mathe-
maticians, and physicists. In particular, the transmission and
reception of signals in communication systems involve the use
of nonlinear devices such as power amplifiers and optical equip-
ment [3]. Hence, communication channels may be corrupted as
a result of nonlinear distortions caused by nonlinear multiple
access interference, intersymbol interference, and inter-carrier
interference just to mention a few. The signal obtained at the
receiving end may deteriorate significantly as a result of these
distortions. To tackle such problems, nonlinear models are de-
ployed to accurately represent the channels and enhance the
development of dedicated signal processing techniques that can
effectively mitigate nonlinear distortions.

In system identification, the ’linear in parameter’ nonlinear
models are widely adopted. While the relationship between
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the input and output of the system is nonlinear, the identification
problem is linear concerning the coefficients of the channel.
Some typical examples are the Volterra filters [4] and polynomial
filters which have been employed widely in several fields such
as electrical engineering, mechanical engineering, and control
engineering to mention a few [5]. These filters excellently model
the real-life behavior of nonlinear phenomena and their memory
effect. In nonlinear system identification, different Volterra
filter-based approaches have been proposed. Some of these
approaches are adaptive and use training symbols [6] and are
typically based on least mean squares algorithms, recursive
least mean square algorithms and affine projection algorithm [7].
Others are fully blind such as higher-order output cumulant-
based method [8], and the subspace-based method [9, 10].

Moreover, it is worth pointing out here that the techniques pre-
sented in the recent studies of [11] and [12] were originally
developed for, and successfully applied to, linear systems for
which they exhibited an excellent performance. This has there-
fore provided us with ample encouragement to extend, in this
work, these techniques to nonlinear systems so that their per-
formance could be used as a baseline against which the per-
formance of our newly-developed algorithm could be directly
compared, thus providing us with a fair and reliable way to
assess the level of improvement achieved by our proposed algo-
rithm.

To emphasize more, the work in [13] is designed for linear sys-
tems and employs a linear model while the proposed work is
designed for nonlinear systems and employs a nonlinear model.
While this difference in approaches makes the comparison be-
tween both algorithms infeasible, it emphasizes the generality
of our approach in that the nonlinear approach presented in our
paper actually subsumes that of the linear approach presented
in [13]. As such, our paper ought therefore to represent a useful
and important extension of our previous work [13], which offers
wider practical applications than can be afforded with the linear
approach.

In this work, we propose a bilinear structure subspace method
for blind channel estimation of a nonlinear SIMO system. The
approach uses the intrinsic Toeplitz structure present in the
signal matrix and the block Sylvester structure present in the
channel matrix to construct a criterion that is minimized to estab-
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lish the estimates of the desired channel parameters. Simulation
results reported in this work reveal the excellent performance of
the proposed algorithm in a nonlinear environment.

Notations: The symbols ()T , ()∗, ()H , ()−1, and Tr(), stand for
the transpose, conjugate, conjugate transpose, inverse, and the
trace operations respectively. A scalar is denoted by a, a vector
by a, and a matrix by A. ∥ . ∥2F represents the Frobenius norm
operation. An a× a dimensional identity matrix is represented
by Ia, a× b dimensional zero matrix matrix is represented by
0a,b. The entry of A at position (i, j) is denoted by A(i, j).

II. THE SYSTEM MODEL

Let us consider a SIMO nonlinear system consisting of a single
transmit antenna, transmitting a signal s(n), and multiple receiv-
ing antennas of size Nr as illustrated in Fig. 1. The received
signal vector y(n), is given as follows [14]:

ℎ 1(𝑛) 

ℎ 𝑁𝑟 (𝑛) 

𝑦1 𝑛  

𝑦𝑁𝑟  𝑛  

ℎ1 𝑛  

ℎ𝑁𝑟  𝑛  

𝑣1 𝑛  

𝑣𝑁𝑟  𝑛  

𝐹 ∙  

𝑠 𝑛  

Fig. 1: The proposed SIMO system’s block diagram.

y(n) =

LL∑
k=0

h(k)s(n− k) +

LNL∑
k=0

h̃(k)s̃(n− k)

+ v(n), (1)

where y(n) =
[
y1(n) · · · yNr

(n)
]T

, h(n) =[
h1(n) · · ·hNr

(n)
]T

and h̃(n) =
[
h̃1(n) · · · h̃Nr

(n)
]T

denote the output signal vector, the channel vector of linear part
and the channel vector of the nonlinear part of size Nr × 1,
respectively, hi(n) and h̃i(n) are the channel taps of the ith

receiving antenna and v(n) =
[
v1(n) · · · vNr

(n)
]T

is an
additive white noise of covariance σ2

vINr
, assumed to be inde-

pendent of the transmitted signal. LL and LNL, respectively,
represent the channel orders of the linear channel h(n) and
the nonlinear channels h̃(n) parts. The transmitted linear
portion of the signal input, which is considered to be an i.i.d.
complex random variable, is denoted by s(n), s̃(n) represents
the nonlinear portion and F represents the nonlinear function
so that s̃(n) = F (s(n), s(n − 1), ...) [6, 15]. In this work a
quadratic nonlinearity is considered i.e., F (s(n)) = s2(n) due
to the fact that many real-life applications have been modeled
in this manner, amongst the popular example is the power
amplifier and the optical devices [14,16,17]. Since the proposed

Note that in our study F(.) can be considered as a general non-
linear function. Only to test the validity of the proposed work in the
sequel, we considered a second order nonlinearity.

model is linear with respect to the coefficients of the channel, a
MIMO model that has two inputs, i.e., s̄(n) = [s(n) s̃(n)]T

can be used to represent the proposed SIMO model [14]. As a
result, the equivalent MIMO model representation is given as:

y(n) =

L∑
k=0

H(k)s̄(n− k) + v(n), n = 0, · · · , N − 1, (2)

where N is the signal size, the kth channel matrix tap is denoted
as H(k) can be expressed as:

H(k) =


h1(k) h̃1(k)

...
...

hNr (k) h̃Nr (k)

 . (3)

and L = max{LL, LNL}. Assuming that Nw samples are
successfully stacked into a yNw

(n) vector of M = NwNr

dimension given as

yNw
(n) = [yT (n) yT (n− 1)...yT (n−Nw + 1)]T , (4)

yNw
(n) = HNw

s̄K(n) + vNw
(n), (5)

HNw
=


H(0) · · · H(L) 0

. . . . . .
0 H(0) · · · H(L)

 , (6)

where s̄K(n) = [s̄T (n) s̄T (n − 1)...s̄T (n − K + 1)]T and
K = Nw + L and HNw

represent the block Sylvester channel
matrix. Finally, one can set up the data matrix as follows:

Y = [yNw(Nw − 1) yNw(Nw), · · · ,yNw(N − 1)]

= HNw S̄K + VNw ,
(7)

where

S̄K =


s̄(Nw − 1) s̄(Nw) · · · s̄(N − 1)
s̄(Nw − 2) s̄(Nw − 1) · · · s̄(N − 2)

...
...

...
s̄(−L) s̄(−L+ 1) · · · s̄(N −K)

 (8)

In the following sections, the manuscript maintains the following
assumptions: The input symbols are sufficiently complex to
ensure that matrix S̄K has a full row rank. The block-Toeplitz
matrix HNw has full column rank.

III. BILINEAR-SIMO NONLINEAR CHANNEL ESTIMATION
APPROACH

This section derives the proposed nonlinear SIMO bilinear
method. The method exploits the information from both the
column and row subspaces of matrix Y which are used to de-
velop a criterion that estimates the channel matrix HNw

in an
iterative manner. To implement the proposed method, the singu-
lar value decomposition (SVD) of the Y matrix is considered:

Y = UΣV H . (9)

To start, let Us represents a sub matrix of U that contains the
first 2K columns of U with dimension M × 2K, Σs is a sub
matrix of Σ that has a dimension of 2K × 2K, and Vs is also
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formed by the first 2K columns of V and has a dimension
of (N − Nw + 1) × 2K. The proposed bilinear method for
nonlinear system is built by exploiting the structures of both
the columns and row subspaces of matrix Y to estimate the
channel matrix HNw

(or equivalently SK the signal matrix) in
an iterative manner. In a noiseless case, the data matrix can be
expressed exactly as follows:

Y = UsΣsV
H
s

= UsṼs

= HNw
S̄K , (10)

where Ṽs = ΣsV
H
s . It is obvious that the expression

HNw
S̄K = (UsQ)

(
Q−1Ṽs

)
can be satisfied by any non-

singular matrix Q. Therefore, the aim is to search for the matrix
Q such that HNw = UsQ and S̄K = Q−1Ṽs (to the level of
ambiguities inherent in blind processing).

The latter equalities are only approximately satisfied in the pres-
ence of noise by minimizing a composite criterion relative to
the HNw and S̄K Sylvester and Toeplitz structure respectively
as well as the nonlinear relationship between s̃(n) and s(n). A
nonlinear matrix inversion (i.e., Q−1) is required in such crite-
rion. Hence, an iterative approach paired with a suitable linear
approximation of matrix inverse update is proposed as

Qnew = Qold(I + E) (11)

Q−1
new ≈ (I − E)Q−1

old, (12)

where Qold and Qnew represent the current and updated value
of Q, respectively. Here, E is used to represent correction
matrix, the matrix elements have values that are so small to
permit the linear approximation considered. The expression
for the combined cost function using(11) and (12) is given as
follows:

J(E) = J1 + J2 + J3 + J4, (13)

where J1 represents the cost function responsible for minimizing
the non zero portion of the Toeplitz structure of UsQnew, J2
minimizes the Toeplitz structure present in Q−1

newṼs, J3 is the
cost function responsible for minimizing the zero terms present
in the first row and column blocks of UsQnew and J4 is to
enforce the nonlinear relation between entries s̃(n) and s(n) in
Q−1

newṼs.

In the ensuing, the newly proposed cost function details are
provided, starting with:

J1=∥ JaUsQold(I + E)J̃a − JbUsQold(I + E)J̃b ∥2F
= ∥ A+A1EJ̃a −A2EJ̃b ∥2F,

where Ja, J̃a, Jb, and J̃b are all selection matrices that contain
ones and zeros and are used to pick the desired portion. These

The tightness of the proposed approximation is because the sub-
space method in [13] (we used for initialization) provides already a
good channel estimate that is further refined by our proposed method
using (typically) just few iterations.

are, respectively, defined as Ja = [IM−Nr 0M−Nr,Nr ], J̃a =

[I2K−1 02(K−1),2]
T , Jb = [0M−Nr,Nr

IM−Nr
], J̃b =

[02(K−1),2 I2(K−1)]
T . Also, the matrices A, A1, and A2 are

found to be expressed as A = JaUsQoldJ̃a − JbUsQoldJ̃b,
A1 = JaUsQold, and A2 = JbUsQold.

A first-order approximation of J1 can be shown to be:

J1 ≈∥ A ∥2F +2Re

{
Tr

(
(J̃aA

HA1 − J̃bA
HA2)E

)}
,

Similarly, the second part of the criterion (13) is given as follows

J2≈∥ Jc(I − E)Q−1
oldṼsJ̃c − Jd(I − E)Q−1

oldṼsJ̃d ∥2F

≈ ∥ B ∥2F +2Re

{
Tr

(
(B2B

HJd −B1B
HJc)E

)}
,

where Jc =
[
I2(K−1) 02(K−1),2

]
, J̃c =[

IN−Nw 01,(N−Nw)

]T
, Jd =

[
02(K−1),2 I2(K−1)

]
,

and J̃d =
[
0(N−Nw),1 IN−Nw

]T
, with B =

JcQ−1
oldṼsJ̃c − JdQ−1

oldṼsJ̃d, B1 = Q−1
oldṼsJ̃c and

B2 = Q−1
oldṼsJ̃d.

Finally, J3 can be expressed as follows:

J3 = ∥ JrwUsQold(I + E)J̃rw ∥2F
+ ∥ JclUsQold(I + E)J̃cl ∥2F

≈ ∥ C ∥2F + ∥ D ∥2F

+2Re

{
Tr

(
(J̃rwC

HC1 + J̃clD
HD1)E

)}
,

where Jrw = [INr
0Nr,NwNr−Nr

], J̃rw =
[02(Nw−1),2(L+1) I2(Nw−1)]

T , Jcl = [0M−Nr,Nr
IM−Nr

]

and J̃cl = [I2 02,2(K−1)]
T , C = JrwUsQoldJ̃rw,

C1 = JrwUsQold, D = JclUsQoldJ̃cl, and
D1 = JclUsQold.

As for the last part J4, since S̄K ≈ Q−1
newṼs, the linear and

nonlinear parts of the matrix can be extracted using appropriate
selection matrix Je and Jf . Je is a matrix of size K × 2K
formed from the odd indexed rows of an identity matrix of size
2K×2K, while Jf is formed from the even indexed rows of the
same matrix. Let S1 and S2 represent the linear and nonlinear
signal matrices, respectively. Hence, they can be written as
follows:

S1 = JeQ−1
newṼs ≈ Je(I − E)Q−1

oldṼs

S2 = JfQ−1
newṼs ≈ Jf (I − E)Q−1

oldṼs

(14)

Hence, J4 can be expressed element-wise as follows:

J4 =
∑
i,j

|F (S1(i, j))− S2(i, j)|2

=
∑
i,j

|S2
1(i, j)− S2(i, j)|2 (15)

≈
∑
i,j

|(Je(I − E)S̄old(i, j))
2 − Jf (I − E)S̄old(i, j)|2
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where S̄old = Q−1
oldṼs. After straightforward derivations, the

first order approximation of J4, can be written in matrix form
as:

J4 ≈ J4,old + 2Re
{
Tr((S̄oldFJe + S̄oldEJf )E)

}
(16)

where J4,old = |(JeS̄old(i, j))
2 − Jf S̄old(i, j)|2 and

E(j, i) = [(JeS̄old(i, j))
2 − Jf S̄old(i, j)]

∗

F (j, i) = −2E(j, i)(JeS̄old(i, j)).

Finally, the first order expansion of J(E) is expressed as follows:

J(E) ≈∥ A ∥2F + ∥ B ∥2F + ∥ C ∥2F + ∥ D ∥2F
+J4,old + 2Re

{
Tr

(
(Ma +Mb +Mc +Md)E

)}
,

(17)

where Ma = J̃aA
HA1 − J̃bA

HA2, Mb = B2B
HJd −

B1B
HJc, Mc = J̃rwC

HC1 + J̃clD
HD1 and Md =

SoldFJe + SoldEJf . Here, to ensure that the cost function de-
creases, E is selected such that it moves in a direction opposite
to that of the gradient, according to:

E = −ρ (Ma +Mb +Mc +Md)
H
, (18)

where ρ represents a small positive constant.

The proposed bilinear method for nonlinear systems uses the
structured channel subspace method in [13] for initialization
and few iterations are used for channel and signal matrix refine-
ment in order to improve estimation quality. The step-by-step
procedure involved in the proposed bilinear method is described
in Algorithm 1.

Algorithm 1: Summary of the proposed Bilinear method.

initialization;
Qold, S̄old

while Number of iterations ≤Nmax do
Qold = Qnew

Ma = J̃aA
HA1 − J̃bA

HA2

Mb = B2B
HJd −B1B

HJc

Mc = J̃rwC
HC1 + J̃clD

HD1

Md = S̄oldFJe + S̄oldEJf .
E = −ρ (Ma +Mb +Mc +Md)

H

Qnew = Qold(I + E)
Q−1

new ≈ (I − E)Q−1
old

S̄new ≈ (I − E)S̄old

HNw = UsQnew

end

IV. COMPUTATIONAL COMPLEXITY

The proposed method’s computation complexity is compared
to the complexity of the subspace (SS) method [11] and the
structured channel subspace (SCS) method [12]. The proposed
bilinear method has the heaviest computational cost with a total
complexity of O((NrNw)(N −Nw)

2)+O((K(N −Nw))
2)+

O((NrNwK)2) due to the data matrix SVD and the fact that it
is initialized with Q from the SCS method. The next in terms

This method estimates the Nr × 2 MIMO channel in (3) up to a
2× 2 unknown matrix (see [13] for details).

of computational cost is the SCS method with a complexity
of O((NrNw)

2(N −Nw)) +O((NrNwK)2). Finally, the SS
method has the least computational cost with O((NrNw)

2(N −
Nw)) + O((Nr(L + 1))2). Here, O represents the order of
complexity.

V. SIMULATION RESULTS

In this section, the normalized mean squared error (NMSE) is
used as performance metric for the developed nonlinear bilinear
method (BSCS), the SS method and the SCS method are inves-
tigated via simulations experiments. In fact, the SCS and SS
methods provide partial channel estimate of the Nr × 2 MIMO
system in (2). More precisely, the estimated channel taps Ĥ(k),
k = 0, · · · , L satisfy

Ĥ(k) ≈ H(k)D

where D is a 2×2 unknown matrix (see details in [18]). In com-
parison, our bilinear method fully estimates the SIMO nonlinear
channel up to a scalar factor (which is the inherent ambiguity
of the blind processing methods for SIMO systems) [19]- [20].
In the sequel, for comparison purpose, we remove these ambi-
guities from the channel estimates, using a least squares fitting
criterion with the exact channel matrix, before their use in crite-
rion (19).

The effectiveness of the proposed channel estimator is firstly ver-
ified by the normalized mean squares error (NMSE) of channel
estimation, which is given in dB as:

NMSE = 20 log10


√

1
Nmc

∑Nmc

i=1 ∥ Ĥi −H ∥2F
∥ H ∥2F

 , (19)

where Nmc = 100 is the number of Monte Carlo runs, H =
[H(0) · · · H(L)] represents the true channel employed in the
simulations, and Ĥi represents the estimated channel at the ith

run.

The input stream s(n) is drawn from a QAM 16 constella-
tion, the nonlinear part is obtained by passing the input stream
through a nonlinear function s̃(n) = F (s(n)) = s2(n) and
the additive noise is white Gaussian with zero mean which is
generated for each Monte Carlo run. Throughout the simula-
tions, the input signal length of N = 100 is considered, Nr = 4
receiver antennas, a window size of Nw = 5, and the channel is
generated randomly with an order of LL = LNL = L = 3 in
all experiments except when otherwise specified. It is crucial to
note that the nonlinear bilinear technique is iterative, with the
step size set to ρ = 1 × 10−6 in all experiments.Here, in this
work our aim was to test the superiority of our algorithm in fair
comparison with the rest of the algorithms.

The proposed bilinear method significantly outperforms the SS
method, the SCS method, and the Bayesian method as shown in
Fig. 2, with a gain of over 2dB in our algorithm’s favor.

In the next experiment, the performance of the algorithms, in-
cluding the previous linear-based algorithm (LBSCS) [13], and
the Bayesian method is investigated in terms of the symbol er-
ror rate (SER) a more discerning and a more reliable metric

2716-912X © 2025 Ecole Nationale Polytechnique
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Fig. 2: The NMSE performance versus SNR.

for this type of steady-state analysis. The results of this com-
parison are all shown in Fig. 3, and clearly demonstrate the
strong consistency between the performance of our proposed
algorithm and other previously published and related algorithms.
As shown in Fig 3, the proposed bilinear method outperforms
all the other algorithms, including our algorithm in [13] with
the worst performance, and gives it an edge in steady-state per-
formance over the other algorithms. For a 6 × 10−3 SER, a
gain of 2 dB in favor of the proposed algorithm against the SCS
method is achieved. Consistency in performance of the pro-
posed algorithm is maintained in all the experiments performed
in this study even the Bayesian method was outperformed by the
proposed algorithm. The proposed method requires the longest
computation time among the evaluated techniques, primarily
due to the joint estimation of signal and channel subspaces and
the iterative refinement process. The Bayesian method follows,
exhibiting moderate computational time. In contrast, both the
SCS and SS methods are computationally efficient, with execu-
tion times significantly shorter than those of the proposed and
Bayesian approaches.

0 5 10 15

SNR (dB)

10-3

10-2

10-1

100

S
E
R

LBSCS
Bayesian
SS
SCS
BSCS

Fig. 3: The SER performance versus the SNR.

VI. CONCLUSION

In this paper, an iterative and efficient bilinear structure subspace
method for blind channel identification is developed which ex-
ploits the column and row subspaces. In addition, the algorithm

was designed to take care of any nonlinearity in the system. This
was achieved by introducing a new term in the minimization
procedure as to tackle the system’s nonliearity. The algorithm
performs better than the considered methods in terms of NMSE
and SER. To examine how well the proposed algorithm per-
formed, several scenarios were examined.

Overall, the proposed method outperformed other methods at
the expense of a moderate computational load which is mainly
due to the involvement of the iterative procedure.
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