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Abstract- This paper presents a geotechnical characterization of soil samples to evaluate their suitability for road 
construction. Laboratory tests, including specific gravity, sieve analysis, compaction, Atterberg limits, and California 
Bearing Ratio (CBR), were conducted to assess engineering properties. The results highlight significant variations in 
particle density, gradation, plasticity, and load-bearing capacity, which critically influence subgrade stability and 
pavement performance. The findings demonstrate that soils with higher specific gravity and well-graded particle 
distribution exhibit superior compaction characteristics and reduced moisture susceptibility. Lower plasticity indices 
correlate with enhanced stability under wet-dry cycles, minimizing long-term maintenance needs. CBR tests further 
reveal that soils with minimal strength loss under soaked conditions are more resilient, ensuring durability in moisture-
prone environments. The study underscores the importance of selecting soils with optimal gradation, density, and 
plasticity to achieve cost-effective and sustainable road infrastructure. Practical implications for construction practices, 
including moisture control and stabilization requirements, are discussed, providing actionable insights for engineers and 
project planners. 
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I. INTRODUCTION 
 

Geotechnical characterization of soils is an important step in 
the successful design and construction of road infrastructure, 
especially in areas with a wide range of soil types and difficult 
environmental conditions. This study looks at the geotechnical 
evaluation of soils along Textile Mill Road in Benin City, 
Nigeria. This road is an important transportation route that has 
had problems with its pavement breaking down because the 
soil was not properly assessed and the construction was not 
done right. This study is unique because it uses both 
traditional and geotechnical testing methods to describe the 
subgrade soils along this specific corridor. This gives a full 
picture of how the soils behave when they are under traffic 
and environmental loads (Amadi et al., 2022 and Ezeh et al., 
2023). This study is different from others that have been done 
in the area because they often used broad soil classifications. 
This study, on the other hand, looks at the geology and climate 
of Benin City in a way that is specific to that area. By doing 
this, it fills in a major gap in localised geotechnical data, 
which is necessary for building roads in Nigeria's rapidly 
growing urban areas in a way that lasts.  

The fact that road infrastructure in Benin City keeps failing 
shows how important this study is. This is often blamed on 
using the wrong soils and not doing enough geotechnical 
investigations. The Textile Mill Road, like many others in the 
area, goes through places with very different types of soil, 
such as lateritic soils, clayey deposits, and sediments rich in 
organic matter. Each of these soils has its own unique 
engineering properties. To design pavements that can last 
through heavy traffic, seasonal rain, and temperature changes, 
it is important to understand these differences. This study uses 
a testing regime that includes specific gravity, particle size 
distribution, compaction characteristics, Atterberg limits, and 
California Bearing Ratio (CBR) to see if these soils are good 
for building roads. We chose these tests because they are well-
known in geotechnical engineering and have been shown to be 
reliable for measuring the quality of subgrade (Osinubi et al., 
2009; Amadi, 2014). However, it is important to explain why 
some advanced tests, like shear strength, compressibility, 
unconfined compressive strength (UCS), and tensile strength 
(Ts), which are often used in thorough geotechnical studies, 
are not included. The main reason these tests were not done is 
because the focus of this research is on the initial evaluation of 
subgrade suitability rather than detailed mechanistic 
modelling. Tests for shear strength and compressibility are 
important for designing foundations, but they are not as 
important for flexible pavement systems, where the main 
concern is the load-bearing capacity of the subgrade, which 
can be measured by CBR and compaction tests (AASHTO, 
1993; NCHRP, 2004). The Nigerian General Specifications 
for Roads and Bridges (2021 revision) backs this up by saying 
that these standard tests should be done first on regular road 
projects. Also, UCS and Ts tests are more useful for cohesive 
soils or stabilised materials, which are not the main focus of 
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and surface runoff, which can modify the inherent properties 
of soil (Egbai et al., 2011). 
The study area, situated along Textile Mill Road in Benin 
City, displays quintessential traits of a tropical urban 
environment. The geographic location, climate, and geological 
characteristics render it an optimal site for examining soil 
properties and their relevance to geotechnical applications. 
 

III. LITERATURE REVIEW 
 
The analysed studies reveal a consistent interconnection 
among these parameters and their combined influence on the 
durability and performance of roads. The amalgamation of 
testing outcomes, bolstered by statistical and modelling 
methodologies, provides a robust framework for forecasting 
soil behaviour and guiding design decisions. Given the 
escalating demand for robust infrastructure due to climate 
variability and heightened traffic loads, extensive geotechnical 
testing is not merely advantageous—it is essential.  The 
design and construction of sustainable and resilient road 
infrastructure rely heavily on precise geotechnical 
characterisation of subgrade soils. Inadequately defined or 
inappropriate subgrade conditions frequently lead to pavement 
failures, irregular settlements, and expensive maintenance. 
Thus, geotechnical soil tests—including specific gravity, 
gradation, Atterberg limits, compaction, and California 
Bearing Ratio (CBR)—are crucial for assessing the 
engineering characteristics of soils and forecasting their 
performance under load and environmental conditions.  
Specific gravity (SG) is a fundamental property that indicates 
the density of soil solids in relation to water. Determining void 
ratio, porosity, and degree of saturation is essential, as these 
factors affect load-bearing performance. Anyaegbunam et al. 
(2021) assert that specific gravity aids in determining soil 
mineralogy and assessing compaction parameters. Soils 
exhibiting elevated specific gravity are generally abundant in 
heavy minerals, resulting in enhanced stability under traffic 
loads. A study by Bello et al. (2019) indicated that lateritic 
soils with specific gravity (SG) ranging from 2.60 to 2.75 
exhibited superior performance as subgrades compared to 
those with lower SG values, attributable to their denser 
composition. Oke et al. (2018) illustrated that specific gravity 
can distinguish between organic and inorganic soils, a 
differentiation essential for road construction. Organic soils 
typically exhibit specific gravity values below 2.50, signifying 
inadequate compaction potential and diminished strength. The 
specific gravity (SG) significantly affects the California 
Bearing Ratio (CBR) and compressibility properties, with 
elevated SG typically resulting in enhanced mechanical 
performance (Edeh&Igwe, 2020).  Gradation or sieve analysis 
ascertains the distribution of gravel, sand, silt, and clay 
particles within the soil, which profoundly influences strength, 
permeability, and stability. Well-graded soils facilitate 
superior interlocking and diminish voids, thereby improving 
compaction and decreasing permeability. Osinubi and 
Nwaiwu (2017) assert that well-graded granular soils are 
optimal for base and subbase courses, providing enhanced 
shear strength and superior drainage. Ajayi et al. (2022) 
highlighted that inadequately graded or uniformly graded soils 

frequently experience differential settlements and moisture 
susceptibility. The research contrasted two subgrade soils with 
varying gradation curves, revealing that the well-graded 
sample exhibited a 25% superior California Bearing Ratio 
(CBR) and a greater maximum dry density (MDD). Adebisi 
and Akinyele (2020) demonstrated that gradation influences 
the optimum moisture content (OMC) during compaction. 
Coarse-grained soils, characterised by a diverse particle size 
distribution, typically necessitate less water and attain superior 
compaction compared to fine-grained soils. Gradation is also 
associated with the Atterberg limits and compaction 
characteristics. Nwachukwu et al. (2019) demonstrate that 
clayey soils characterised by a substantial fine fraction and 
inadequate gradation exhibit elevated plasticity indices and 
necessitate chemical stabilisation for enhanced performance.  
The Atterberg limits are essential for the classification of fine-
grained soils and the evaluation of their plasticity, workability, 
and moisture sensitivity. The liquid limit (LL), plastic limit 
(PL), and plasticity index (PI) denote soil behaviour under 
different moisture conditions. Soils exhibiting elevated liquid 
limit (LL) and plasticity index (PI) are expansive and pose 
challenges for road construction due to their swelling and 
shrinkage characteristics. Akinwumi et al. (2021) assessed the 
Atterberg limits of lateritic and clayey soils from southwestern 
Nigeria, concluding that soils with plasticity index values 
exceeding 20% exhibited inadequate performance as 
subgrades without stabilisation. Conversely, soils with a 
Plasticity Index below 10% exhibited negligible volume 
alteration and were appropriate for light to medium traffic 
roadways. Yahaya et al. (2018) observed that the Atterberg 
limits facilitate the prediction of compaction behaviour and 
California Bearing Ratio (CBR). Soils exhibiting reduced 
Liquid Limit (LL) and Plasticity Index (PI) generally 
demonstrate superior compaction and enhanced bearing 
capacity. Musa et al. (2022) identified a significant inverse 
correlation between Plasticity Index (PI) and California 
Bearing Ratio (CBR); highly plastic soils demonstrated CBR 
values as low as 4%, whereas soils with low plasticity 
achieved values exceeding 20%, suggesting their 
appropriateness for subgrade and subbase applications. 
Moreover, Atterberg limits facilitate soil classification within 
the AASHTO and Unified Soil Classification Systems 
(USCS), informing decisions regarding necessary treatments 
or replacements prior to road construction (Ola, 2017). 
Compaction is the mechanical densification of soil to augment 
its strength, diminish settlement, and enhance resistance to 
deformation. The standard Proctor and modified Proctor tests 
provide parameters including Maximum Dry Density (MDD) 
and Optimum Moisture Content (OMC), which inform field 
compaction activities. Research conducted by Ogundipe et al. 
(2019) demonstrates that well-compacted soils facilitate 
superior load distribution and extend pavement longevity. It 
was determined that MDD values ranging from 1.70 to 2.10 
g/cm³ offered sufficient subgrade support in tropical lateritic 
soils. OMC, conversely, fluctuates according to soil type. 
Fine-grained soils generally demonstrate elevated optimum 
moisture content, rendering them more susceptible to 
construction scheduling, particularly during periods of 
precipitation. Ibrahim et al. (2020) noted that soil type and 
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gradation substantially affect compaction behaviour. Coarse-
grained soils attain elevated Maximum Dry Density (MDD) at 
reduced Optimum Moisture Content (OMC), whereas fine-
grained and organic soils necessitate increased moisture yet 
frequently do not achieve optimal MDD levels. This 
underscores the necessity of pre-construction soil analysis to 
customise compaction specifications effectively. Afolayan et 
al. (2022) investigated the impact of different compactive 
efforts on clayey soils and discovered that heightened 
compactive energy increased the maximum dry density 
(MDD) by as much as 15%, specifically for soils with low 
plasticity index (PI) values. For highly plastic soils, the 
enhancement was minimal, indicating that compaction alone 
may be inadequate without stabilisation. The California 
Bearing Ratio is a penetration test that assesses the strength 
and stiffness of soil and subgrade materials under simulated 
loading conditions. It continues to be one of the most essential 
factors in pavement design, especially for flexible pavements. 
CBR values directly indicate the soil's appropriateness for use 
as subgrade, subbase, or base material. Olowofela and 
Okogbue (2017) demonstrated that lateritic soils with CBR 
values exceeding 15% are typically appropriate as subgrade 
materials, whereas those below 5% necessitate stabilisation or 
replacement. Ogbonna et al. (2021) performed comprehensive 
CBR testing on expansive clay soils and discovered that CBR 
values significantly decreased with elevated moisture content, 
emphasising the necessity of effective drainage and moisture 
management in pavement construction. The research 
highlighted the relationship between Atterberg limits and CBR 
values, indicating that soils with higher plasticity indices 
consistently exhibited lower CBR values. Research conducted 
by Okunlola and Ibrahim (2019) evaluated the California 
Bearing Ratio (CBR) of different tropical soils, demonstrating 
that sandy soils attained CBR values exceeding 30% in their 
natural condition, whereas clayey soils necessitated cement or 
lime stabilisation to surpass the minimum design threshold of 
10–15%. Furthermore, CBR testing under saturated conditions 
replicates worst-case scenarios, and this methodology is 
crucial in regions susceptible to water infiltration. 
Contemporary methods of geotechnical characterisation 
prioritise integrated testing, wherein the outcomes of one test 
influence the anticipations or modifications required for 
subsequent tests. Arowojolu and Adedokun (2020) proposed a 
classification model utilising Atterberg limits and gradation to 
predict CBR values. This model enhances efficiency in initial 
investigations and diminishes testing expenses. Ezeokonkwo 
et al. (2020) developed a regression model correlating MDD, 
OMC, PI, and specific gravity with CBR values, illustrating 
that a comprehensive approach provides more dependable 
subgrade classification than individual testing. Mugabe and 
Muriithi (2021) evaluated road failure in low-volume roads in 
East Africa and attributed the cause to insufficient 
geotechnical testing during the design phase. Soils exhibiting 
high plasticity and inadequate drainage were utilised without 
appropriate compaction or stabilisation, resulting in pavement 
failure during seasonal precipitation. The research emphasised 
the importance of employing Atterberg limits, compaction, 
and CBR data to tailor designs to regional soil characteristics. 
In Nigeria, Fatoba and Alabi (2018) examined over 30 
unsuccessful road projects and determined that inadequate 

analysis of CBR and Atterberg limits contributed to over 50% 
of design failures. They promoted compulsory geotechnical 
testing, especially in clay-dominant areas with significant 
precipitation. Innovative technologies in geotechnical 
characterisation encompass expedited field testing techniques 
and artificial intelligence for forecasting test outcomes. 
Akinlolu et al. (2023) elucidate that machine learning models 
can forecast CBR values utilising data from Atterberg limits, 
gradation, and compaction. These tools offer efficiency, 
particularly in extensive projects where time and resources are 
constrained. The geotechnical characterisation through 
specific gravity, gradation, Atterberg limits, compaction, and 
CBR tests constitutes the foundation of effective road 
construction methodologies. These tests yield critical insights 
into soil behaviour in response to loading, variations in 
moisture, and compaction efforts. Specific gravity aids in 
determining soil mineralogy and density; gradation affects 
stability and drainage; Atterberg limits evaluate plasticity and 
potential volume change; compaction establishes the optimal 
moisture and density for performance; and CBR measures 
strength and stiffness for pavement design. 
 

IV. RESEARCH METHODOLOGY 
 
This study employed a systematic, multi-stage research 
methodology to evaluate the geotechnical properties of soils 
along Textile Mill Road in Benin City, Nigeria. The approach 
combined field investigations with comprehensive laboratory 
testing, following international standards while adapting to 
local conditions. The methodology was designed to provide 
reliable data for road construction while addressing the unique 
challenges posed by tropical residual soils in the region. The 
research focused on a strategic location along Textile Mill 
Road, selected based on preliminary visual surveys and 
historical records of pavement distress. Sampling followed the 
Nigerian General Specifications for Roads and Bridges (2021) 
guidelines, with disturbed and undisturbed samples collected 
from 0.5-1.5m depths at each location. A modified Shelby 
tube sampler was used to obtain undisturbed samples for 
compaction and CBR tests, while disturbed samples were 
collected for classification and index property tests. The 
sampling strategy accounted for seasonal variations by 
conducting collections during both wet and dry seasons, as 
recommended by Amadi et al. (2022) for tropical soil studies. 
The laboratory investigation comprised a suite of tests 
selected to evaluate fundamental engineering properties 
relevant to road construction. Particle size distribution 
analysis was performed using both wet sieving (for particles 
>75μm) and hydrometer methods (for fines), following ASTM 
D6913 and D7928 standards. Atterberg limits were 
determined according to ASTM D4318, with particular 
attention to the plasticity characteristics that influence soil 
behaviour under moisture variations. Compaction 
characteristics were evaluated using the standard Proctor test 
(ASTM D698), crucial for understanding the moisture-density 
relationship of the soils. The CBR tests were conducted 
following ASTM D1883, with both soaked and unsoaked 
conditions evaluated to simulate worst-case and typical field 
scenarios. This dual approach, as advocated by Sani et al. 
(2023), provides more realistic performance predictions for 
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Benin City's tropical climate. The soaking period of 96 hours 
accounted for potential prolonged water exposure during 
heavy rains. 
 

V. RESULTS AND DISCUSSION 
 
The results and discussion with respect to the geotechnical 
tests are presented below: The specific gravity test results 
(Table 1) for samples C1 and C2 reveal distinct differences in 
their soil particle densities. Sample C1 has an average specific 
gravity of 2.39, while C2 exhibits a higher value of 2.60. This 
suggests that C2 contains denser mineral particles, possibly 
due to a higher concentration of heavy minerals like iron 
oxides or quartz. The consistency in C2’s measurements (2.61 
and 2.60) indicates precise lab work, whereas C1’s slight 
variation (2.37 and 2.40) may reflect minor heterogeneity in 
the sample. These values are critical for understanding soil 
behaviour, as higher specific gravity often correlates with 
better load-bearing capacity and lower porosity. The results 
align with typical ranges for sandy or clayey soils, with C2’s 

higher density hinting at superior engineering properties for 
construction applications. 
 
Table 1. Specific Gravity Test 

S/N POINTS 
SPECIFIC 
GRAVITY 

1 C1 2.39 

2 C2 2.60 

 
The sieve analysis highlights the gradation differences 
between C1 and C2(Figures 3 and 4). C1 shows 93.1% 
passing the 1.18mm sieve, compared to 87.25% for C2, 
indicating C1 is finer. However, C2 has a higher percentage 
(55.35%) passing the 0.425mm sieve versus C1 (51.75%), 
suggesting a more uniform particle distribution. 

 
Figure 3: Sample C1 PSD curve 

 
 

 
Figure 4: Sample C2 PSD curve 
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Both samples classify as A-2 soils per AASHTO, with 
C1 as A-2-6 (higher plasticity) and C2 as A-2-4 
(lower plasticity). The finer fraction (<0.075mm) is 
similar (~24%), but C2’s coarser mid-range particles 
may enhance drainage and reduce compaction effort. 
These results are vital for determining suitability in 
subgrade or embankment construction, where 
gradation affects stability and permeability. The 
compaction tests show C1 (Figure 5) achieves a 
higher maximum dry density (MDD) of 2.03 g/cm³ at 
11.3% optimum moisture content (OMC), while C2 

(Figure 6) reaches 1.99 g/cm³ at 11.2% OMC. The 
marginal difference in OMC suggests similar water 
requirements for compaction, but C1’s higher MDD 
implies better particle packing, likely due to its finer 
texture. Both curves peak sharply, indicating well-
graded soils. The lower MDD of C2 may reflect its 
coarser composition, which could reduce shear 
strength but improve drainage. These findings guide 
field compaction practices, emphasizing the need for 
moisture control to achieve optimal density for load-
bearing layers. 

 
Figure 5: Compaction curve for sample C1 

 

 
Figure 6: Compaction curve for sample C2 

 
 
Sample C1 (Figure 7) exhibits higher plasticity 
(LL=29%, PI=14) than C2 (Figure 8) (LL=22.1%, 
PI=10), classifying C1 as more clayey and C2 as 
siltier. The lower plasticity of C2 suggests reduced 
shrink- swell potential, making it more stable under 
moisture variations.      Both samples have low liquid   

 
 
limits (<30%), typical of subgrade materials, but C1’s 
higher PI indicates greater cohesion, which may 
enhance strength but increase susceptibility to 
cracking. These results are crucial for predicting soil 
behaviour under wet conditions and selecting 
stabilization methods for road construction. 



 ENP Engineering Science Journal, Vol. 5, No. 1, July, 2025                                                                               19 
 

 
2716-912X © 2025 Ecole Nationale Polytechnique 

 
 

 
Figure 7: Liquid limit graph for sample C1 

 

 
Figure 8: Liquid limit graph for sample C2 

 
The California Bearing Ratio (CBR) tests reveal C2 
outperforms C1 in both unsoaked and soaked 
conditions. For instance, C2’s unsoakedCBR at 
5.0mm penetration is 16.36% (bottom layer) versus 
C1’s 15.03%. Notably, C2’s soaked CBR (15.58%) 
shows minimal reduction from unsoaked values, 
indicating superior water resistance, while C1’s 
soaked CBR drops significantly (13.62% to 7.55% for 
2.5mm penetration). This underscores C2’s better 
suitability for water-prone areas. The top layer results 
follow similar trends, reinforcing C2’s reliability for 
pavement subgrades under varying moisture 
conditions. 
 
Table 2: CBR Values Summary 

Sample Condition 
CBR 
(2.5mm) 

CBR 
(5.0mm) 

C1 Unsoaked 11.09 15.03 

C1 Soaked 7.55 13.62 

C2 Unsoaked 12.39 16.36 

C2 Soaked 12.39 15.58 

 
Discussion 
 
The laboratory test results for soil 
samples C1 and C2 provide critical insights into their 
suitability for road construction. These tests—specific 
gravity, sieve analysis, compaction, Atterberg limits, 
and California Bearing Ratio (CBR)—collectively 
define the geotechnical properties that influence 
subgrade stability, compaction efficiency, drainage, 
and long-term durability. The findings suggest that 
while both soils fall within acceptable ranges for road 
construction, C2 exhibits superior engineering 
properties, particularly in load-bearing capacity and 
moisture resistance. The specific gravity values for C1 
(2.39) and C2 (2.60) indicate differences in mineral 
composition. A higher specific gravity, as seen in C2, 
typically suggests the presence of denser minerals 
such as quartz or iron oxides, which contribute to 
better shear strength and reduced void ratios. This 
property is crucial for road subgrades, as denser soils 
resist deformation under traffic loads more 
effectively. The consistency in C2’s measurements 
(2.61 and 2.60) also implies sample homogeneity, 
whereas C1’s slight variation (2.37 to 2.40) may 
indicate minor inconsistencies in particle distribution. 
For road construction, C2’s higher density implies 
better compaction potential and reduced settlement 
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risks. The sieve analysis classifies C1 as A-2-
6 and C2 as A-2-4 under the AASHTO 
system. C1 has a higher percentage passing the 
1.18mm sieve (93.1% vs. 87.25%), indicating a finer 
texture, while C2 shows better uniformity in mid-
range particles (55.35% passing 0.425mm vs. 51.75% 
for C1). The near-identical fines content (~24% 
passing 0.075mm) suggests similar susceptibility to 
moisture, but C2’s coarser fraction enhances drainage, 
reducing the risk of water retention and subsequent 
weakening. For road construction, C2’s gradation is 
more favourable because it balances fines (for 
cohesion) and coarser particles (for permeability). 
Excessive fines, as in C1, can lead to poor drainage 
and higher plasticity, increasing the risk of swelling 
and shrinkage. The A-2 classification confirms both 
soils as suitable subgrade materials, but C2’s A-2-
4 designation (lower plasticity) makes it preferable for 
areas with fluctuating moisture conditions. The 
compaction tests reveal that C1 achieves a higher 
maximum dry density (MDD = 2.03 g/cm³) at an 
optimum moisture content (OMC = 11.3%), 
while C2 reaches a slightly lower MDD (1.99 g/cm³) 
at nearly the same OMC (11.2%). The marginal 
difference in OMC suggests similar water 
requirements for compaction, but C1’s higher 
MDD indicates better particle packing due to its finer 
texture. However, C2’s compaction curve shows a 
broader plateau near the peak, meaning it is less 
sensitive to minor variations in moisture. This is 
advantageous in field conditions where exact moisture 
control is challenging. C1’s steeper curve implies 
stricter moisture control is needed to avoid under- or 
over-compaction. In practice, C2’s behaviour reduces 
the risk of weak spots in the road base, making it 
more forgiving during construction. The Atterberg 
limits highlight key differences in soil behaviour 
under moisture changes. C1 has a higher liquid limit 
(LL = 29%) and plasticity index (PI = 14) compared 
to C2 (LL = 22.1%, PI = 10), classifying C1 as more 
clayey and C2 as siltier with lower plasticity. High-
plasticity soils like C1 are prone to significant volume 
changes—swelling when wet and shrinking when 
dry—which can lead to cracking and uneven 
settlement in pavements. C2’s lower PI suggests 
greater stability under moisture variations, reducing 
maintenance needs. For road construction, C2’s lower 
plasticity makes it a more reliable subgrade material, 
especially in regions with seasonal rainfall. The CBR 
test is a critical indicator of a soil’s strength under 
traffic loads. C2 outperforms C1 in both soaked and 
unsoaked conditions. In the unsoaked state, C2’s CBR 
(16.36% at 5.0mm penetration) is higher than C1’s 
(15.03%), indicating better resistance to deformation. 
More importantly, C2’s soaked CBR (15.58%) shows 
minimal reduction from its unsoaked value, 
whereas C1’s soaked CBR drops sharply (13.62% to 
7.55% at 2.5mm penetration). This resilience to water  
is crucial for road longevity, as subgrades often 
experience moisture infiltration. C2’s superior soaked 

CBR implies it will maintain structural integrity even 
in wet conditions, reducing the risk of potholes and 
rutting. C1’s significant strength loss when 
saturated suggests it may require stabilization (e.g., 
lime or cement treatment) if used in high-moisture 
environments. 

 
VI. CONCLUSION 

 
The comprehensive geotechnical evaluation of soil 
samples C1 and C2 provides critical insights into their 
suitability for road construction, highlighting key 
differences in their engineering properties and long-
term performance. The laboratory tests—specific 
gravity, sieve analysis, compaction characteristics, 
Atterberg limits, and California Bearing Ratio 
(CBR)—collectively paint a clear picture of how 
these soils will behave under the stresses imposed by 
traffic loads, environmental conditions, and moisture 
fluctuations. The findings underscore the importance 
of selecting the right soil type to ensure structural 
integrity, minimize maintenance costs, and enhance 
the durability of road infrastructure. C2 emerges as 
the superior material for road construction due to its 
favourable geotechnical properties. Its higher specific 
gravity (2.60) suggests a denser mineral composition, 
which translates to better load-bearing capacity and 
reduced susceptibility to settlement. The sieve 
analysis further supports this advantage, revealing a 
well-graded particle distribution that balances 
cohesion and permeability. With 55.35% of particles 
passing the 0.425mm sieve and only 23.8% 
fines, C2 offers optimal drainage characteristics, 
reducing the risk of water retention that could weaken 
the subgrade over time. This is particularly crucial in 
regions prone to heavy rainfall or seasonal moisture 
variations, where poor drainage can lead to premature 
pavement failure. The compaction test results 
reinforce C2’s practicality in field applications. While 
it achieves a slightly lower maximum dry density 
(1.99 g/cm³) compared to C1 (2.03 g/cm³), its broader 
compaction curve indicates greater flexibility in 
moisture control during construction. This is a 
significant advantage in real-world scenarios, where 
maintaining exact moisture levels can be 
challenging. C1’s steeper curve, on the other hand, 
demands stricter quality control, increasing the risk of 
under- or over-compaction if conditions deviate even 
slightly from the optimum.  The reduced sensitivity 
of C2 to moisture variations makes it a more forgiving 
and cost-effective choice for large-scale projects. The 
Atterberg limits further differentiate the two soils, 
with C2’s lower plasticity index (PI = 10) indicating 
reduced susceptibility to volume changes under wet 
and dry cycles. In contrast, C1’s higher PI 
(14) suggests a greater tendency for swelling and 
shrinkage, which can lead to cracking and uneven 
settlement in pavement layers. For engineers, this 
means that while C1 may provide adequate short-term 
performance, C2 offers long-term stability with fewer 
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maintenance demands. This distinction is particularly 
important in climates with significant seasonal 
weather changes, where expansive soils can cause 
recurrent damage to road surfaces. The CBR test 
results deliver perhaps the most compelling evidence 
of C2’s superiority. Its higher unsoakedCBR 
(16.36%) compared to C1 (15.03%) confirms better 
resistance to deformation under load. More 
critically, C2’s soaked CBR (15.58%) shows minimal 
reduction from its unsoaked value, demonstrating 
remarkable resilience to water infiltration. C1, 
however, suffers a drastic drop in strength when 
saturated (from 13.62% to 7.55%), highlighting its 
vulnerability to moisture. This stark contrast 
underscores the risks of using C1 in areas with high 
groundwater levels or poor drainage, where prolonged 
exposure to water could compromise the entire 
pavement structure. From a practical standpoint, the 
choice between these soils hinges on both engineering 
and economic considerations. C2’s inherent 
strengths—superior drainage, lower plasticity, and 
consistent load-bearing capacity—make it the 
preferred material for subgrade and base layers, 
particularly in high-traffic or moisture-prone areas. Its 
use would likely reduce the need for costly 
stabilization techniques and extend the service life of 
the road. C1, while usable, would require additional 
measures such as chemical stabilization or improved 
drainage systems to mitigate its limitations. These 
interventions add to construction costs and 
complexity, making C2 a more sustainable option in 
the long run.  In conclusion, the geotechnical 
characterization of C1 and C2 reaffirms a 
fundamental principle in road construction: the 
importance of selecting materials that align with both 
environmental conditions and performance 
requirements. C2’s balanced properties—gradation, 
density, plasticity, and moisture resistance—make it 
an ideal choice for durable, low-maintenance roads. 
By contrast, C1’s higher plasticity and moisture 
sensitivity necessitate careful engineering 
interventions to ensure comparable performance. 
These findings not only guide material selection for 
this specific project but also emphasize the value of 
thorough soil testing in achieving cost-effective and 
resilient infrastructure. Ultimately, investing in the 
right soil at the construction phase pays dividends in 
reduced maintenance and enhanced road longevity, 
benefiting both builders and end-users alike. 
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