
31ENP Engineering Science Journal, Vol.5, No.1, July, 2025 

 
2716-912X © 2025 Ecole Nationale Polytechnique 

 

A smooth gain scheduling generalized predictive 
control 

Yassine Himour, Mohamed Tadjine, and Mohamed-Seghir Boucherit 

Abstract− Nonlinear model predictive control is an emerging control technique dealing with high nonlinearities of 
industrial plants. However, it suffers from many hurdles such as the numerical problems related to the resulting no 
convex nonlinear optimization problem, time consuming, and difficulties in analyzing properties such as stability. In 
this paper, to side-step these difficulties, an infinite gain scheduling generalized predictive control is designed to control 
a benchmark high nonlinear plant instead of nonlinear predictive control. A neural model of the plant is identified and 
used as an internal model of the generalized predictive control scheme. The neural model is linearized successively and 
a filtering process is used to smooth the adaptation of the linearized model every sample time. The results show good 
performance in tracking the reference and rejecting abrupt changes in measured disturbances. The filtering process 
improved the results in terms of rapidity, overshoots damping, and smoothing the control signal. 
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NOMENCLATURE 

 

I. INTRODUCTION 

Model predictive control is the most used advanced control 
technique in industry. This is because it provides many 
advantages, among which constraints handling. Additionally, 
the principle of MPC is intuitive and its tuning is relatively 
straightforward—  even practitioners with limited knowledge 
have the chance to work with. MPC can handle a panoply of 
processes that encompasses those with complex dynamics 
such as high nonlinearities, long delays, unstable 
characteristics and nonminimum phase systems[1]. MPC can 
be easily extended to multivariable cases, and it naturally 
includes feedforward action that allows it to exploit measured 
disturbances.   For systems with high nonlinear dynamics, it’s 
obvious that nonlinear predictive control is the first MPC 
technique to think to use with. However, NMPC relies on 
nonlinear optimization which shows many hurdles, especially 
in real time implementation. Among difficulties NMPC 

suffers from difficulty of theoretical analysis of properties 
such as stability[2]. Most solutions in this situation add more 
complexities and many computational problems may show up, 
for example the nonlinear optimization algorithm could not 
converge to the desired accuracy and/or can’t converge in the 
needed time, especially in the case of fast systems. Moreover, 
numerical problems could occur and the obtained solution is 
not verified to be a global optimal solution. One interesting 
alternative to bypass those NMPC difficulties while treating 
high nonlinearities in a good way, is adaptive linear MPC, but 
again, adaptive MPC needs extra mechanisms to avoid 
adaptation problems such as persistent excitations which are 
crucial to obtaining good results. In such situation, scheduled 
gain MPC strategy has demonstrated better performance [3].    

The gain scheduling MPC control strategy uses linearized 
models of the nonlinear process to predict the outputs over a 
prediction horizon, this results in poor modelling performance 
when using long prediction horizon, this is because the 
linearized models are supposed to be used near the operation 
points of their linearization. Some ideas have been appeared to 
cope with this problem. For example in [4], this is treated by 
interpolating the controller gains between four operating 
points chosen on the basis of the manipulated variable. 
Inspired by this idea, the authors in [5] used an interpolation 
of the linearized models’ parameters.  

This study aims to develop an MPC control strategy, namely, 
an infinite neural gain scheduling generalized predictive 
control, to overcome the aforementioned challenges. The 
remainder of this paper is organized as follows: the next 
section explains the control strategy, and gives details about 
its elements, namely, the generalized predictive control and 

the neural model and its linearization. In section III, the 
introduced control strategy is applied to a highly nonlinear 
process, the output temperature in the ACUREX parabolic 
trough collector field. 

II. CONTROL STRATEGY AND DESIGN 

The strategy is to use an artificial neural network model to 
reduce the computations[6]and to assure a maximum 
performance and capture of the plant nonlinear dynamics. In 

ANN Artificial neural network 
ARX Autoregressive exogenous inputs 
CARIMA Autoregressive integrated moving average 
GPC Generalized predictive control 
HTF Heat transfer fluid 
MPC Model predictive control 
NLP Nonlinear problem 
NMPC Nonlinear predictive control 
PTC Parabolic trough collector 
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every sampling time, the neural model is linearized around the 
actual operating point, and a linear GPC control law is applied 
using the linearized model. This strategy avoids NLPs and 
results in more precise local linear models than considering 
only some operating regimes.   

A. Generalized predictive control 

The generalized predictive control is an MPC control 
technique based oncontrolled autoregressive integrated 
moving average model(CARIMA model): 

 (1) 

Where,  is the time backward shift operator, the 

differencing operator: ,  and   are the 

output and the input of the model,  is the dead time 

according to the input . And  is a zero mean white 

noise.  are the model polynomial with 

is monic.  

In GPC the cost function is usually defined by: 

 (2) 

Where, is the reference signal,  is the 

predictions at time  calculated at time ,  is the 

control increments, is the penalty factor of the control 

increments, are the first and second prediction 

horizons, and  is the control horizon.  

When there is no constraints, the GPC control can be given by 
the following analytical expression[7]: 

 
 

(3) 

Where,  is the vector of the control increments over the 

control horizon,  is a matrix whose elements are the step 

response coefficients[7],  is the free response depending on 

past and present signals, and  is the known reference over the 
control prediction horizon. 

Every sampling time, only the first element of   is applied 
to the real system, and the calculations are repeated for the 
next sample where new measurements are obtained. The 

control horizon  is commonly chosen less than the 

prediction horizon, hence the elements of after 

the element are taken equal to zero, this reduces the 
computations, particularly those of the inverse matrix whose 

dimensions become . 

B. Neural network modeling and linearization 

In[8] it was demonstrated that with a one hidden layer, an 
ANN is able to model any measurable function to any desired 
degree of accuracy. On the basis of that result, in this work, a 
two-layer perceptron is used; its output is given as follows: 

 (4) 

Where,  are the weights of the hidden to output 

layer and the input to hidden layer respectively.  and  

are the biases of the nodes.  is the number of the hidden 

neurones, and  is the length of the input vector .  

As mentioned before, this neural model is linearized every 
sampling time to get a linear CARIMA model appropriate to 
be used as an internal model in the GPC control law. 

Let the whole function in(4) be expressed by the shorter 
expression: 

 (5) 

Where  is the input vector of the neural network:  

 

Linearizing the ANN model  around an operating point  
gives: 

 (6) 

With,  

 

 

And 
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Putting the elements of the current instant  in(6) on one side 
gives: 

 

Or  

 
 

(7) 

Taking  in(1) equals to 1, and modelling  as an 
integrated white noise makes this model identical to the model 
used in the MPC control law. 

C. Smoothing the adaptation of the linearized model’s 
parameters 

As mentioned earlier, using a linearized model, which is 
supposed to give good predictions just near the operating point 
of linearization, to predict the output of the process over long 
prediction horizon can result in poor performance of the 
model. For this reason, it is proposed here to use a filtering 
parameter to smooth the adaptation of the linear model’s 
parameters. The filter expression is given by[9]: 

 
 

(8) 

Where  is every polynomial of the model in (7),  is 

the actual sample time, and  is the introduced tuning 
parameter. 

This filtering process has the effect of smoothing the variation 
of the parameters of the successively linearized models. 

Increasing the parameter  slows the adaptation of the model 
and vice versa. The filtering process would improve the 
performance of the gain-scheduled GPC controller when there 
are disturbances or abrupt changes in the reference. In the 
absence of these two factors, the filter would have no 
noticeable effect. 

III. CASE STUDY 

In this section, the strategy developed above is applied to the 
ACUREX solar parabolic trough field.  

A. Plant description and modelling 

The ACUREX plant is a PTC based distributed solar collector 
field. It is located in the desert of Tabernas, in southern of 
Spain. It is an experimental facility that has a maximum 
energy of 0.5 MW. The concentrators are aligned east-west in 
10 parallel loops, every loop is composed of two rows. The 
length of one loop is 172 m, and only 142 m of the tube per 
loop receive the concentrated sun rays. The heat transfer fluid 
(HTF) used in the ACUREX field decompose for 
temperatures bigger than 300°C. The HTFflows in the 
absorber tube through the field area to collect solar energy in 
the form of heat. 

 

Fig 1: ACUREX Distributed Solar Field Schematics[10] 

The HTF flow is limited between 2.0 and 12.0 l / s[11], or 0.2 
and 1.2 l/s for every loop. This is to ensure safety especial to 
avoid the risk of the HTF decomposition.  

he following hypothesis are considered in elaborating the 
model used in the present work[12]: 

1. The properties of the heat transfer fluid are functions 
of the actual temperature value, and the flowequals to 
its average value. 

2. Tube wall temperature variations are not taken into 
account. 

3. Losses caused by the conduction of axial heat on both 
sides of the wall are negligible. 

The enthalpy accumulated in the  element, between two 

instants time  is given by the thermodynamics law:  

 
 

(9) 

Where, is the space variable (m),  is thecross-sectional area 

of the tube (m2), is thefluid mass density (Kg/m3), is the 

fluid specific heat capacity (J /Kg °C), and is the fluid 
temperature (°C).  

This enthalpy is the sum of two enthalpies. The first is the 
difference between the enthalpy entering and the enthalpy 

leaving the element due to fluid flow in  time: 

 
 

(10) 

Where  is the fluid volumetric flow rate (m3 /s). 

The second is due to the harvested solar energy between the 

two points  in  time: 

 (11) 
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Where,  is the solar irradiance (W/m2),  is the optical 

efficiency (Unit-less), and  is the concentrator aperture (m). 

By putting , we obtain the expression of the 

temperature evolution in every element  :  

 

 

(12) 

 is the total length of the absorber tube (m),   , and 

 

Define now, gives   

And noting . Then, the set of differential equations 
defining the temperature process in a PTC field is:  

 

 

 

 

 

(13) 

B. Neural identification of the ACUREX plant 

In the first principal model in (13),the solar irradiance  

and the inlet temperature (or  the HTF inlet 
temperature) are unmanipulated inputs, i.e., they have a direct 

effect on the output  (or : the HTF outlet 
temperature) but are not commands, they are measured 
disturbances. However, in this work it’s the model (13) which 
is being identified by the neural network but not the real plant. 
This gives the possibility to use the irradiance and the inlet 
temperature with the HTF flow as excitation signals in the 
identification task.  

Fig. 2 depicts the curves of the used excitation signals over 
range of 12 hours. The irradiance signal is shaped likewise to 
imitate real solar irradiance during a day. The database is 
divided into two datasets, one for training and the other for 
validation. The total length is 18000 samples, with a time 
sampling of 15s.  

 

 

 

 

 

 

 

 

 

Fig. 2: The identification database[9] 

Trial and error tests were held to find the convenient 
parameters of the ANN. The results in Fig. 3 and Fig. 4 were 
obtained for an ARX structure with 12 neurons in the hidden 
layer, one sample dead time for the three inputs, 5 order of the 
past delayed output, 4 for the control flow, and 3 for both the 
irradiance and the inlet temperature.  

 

Fig. 3: The output, the prediction and error 

 

Fig. 4: Cross correl3ations of the inputs and the prediction error 

It’s to notice that the prediction error peaks in second subplot 
of Fig. 4 is due to big instantaneous changes of the output 
temperature, which is not usual in the real plant. The 
autocorrelation of the error and its cross-correlation with the 
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inputs is null, and this is a good index of the good 
performance of the identified model.  

C. Application of the control strategy 

The control strategy introduced in section II is applied here 
using the identified neural model. Fig. 5 shows the profile of 
the measured disturbances, i.e., the solar irradiance and the 
inlet HTF temperature. Two aggressive changes were added 
on the two signals to simulate two disturbances. Artificial 
estimations are made by adding made-up estimation errors, 
and are to be used in the GPC prediction horizon instead of 
the real signal.  

 

Fig. 5: The measured disturbances profile[9] 

To test the robustness of the control law, model mismatch has 
been added to the first principal model which is used as a 
simulator of the real plant, and the reference signal was 
chosen to cover a wide range of the plant dynamics. Fig. 6 and 
Fig. 11 illustrate the output and the command behaviors 

respectively for different values of the smoothing parameter .  

 

Fig. 6: Output versus the reference for different values of the smoothing 
parameter 

Fig. 6 shows the performance of the control scheme in 
rejecting the two disturbances injected on the solar irradiance 
and the HTF inlet temperature, and the performance of 
tracking the reference.  Fig. 7, Fig. 8, Fig 9 and Fig. 10, 

bellow, are a zoom into the red circles in Fig. 6, to show better 

the effect of the parameter . The figures are ordered 
corresponding to the circles from left to the right, i.e., the 
circle most to the left is in Fig. 7, the next to it is in Fig. 8, … 
etc. 

 

Fig. 7: Zoom on the first red circle from the left in Fig. 6 

 

Fig. 8: Zoom on the second red circle from the left in Fig. 6 

 

Fig. 9: Zoom on the third red circle from the left in Fig. 6 
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Fig. 10: Zoom on the fourth red circle from the left in Fig. 6 

These figures clearly depict the improvement brought by the 
introduction of the filtering process of the polynomials of the 
successively linearized models. As it was expected, the 
filtering has no effect when the plant is in steady state, i.e., 
when there is no abrupt change of the reference. The best 

value of in this simulation is 0.5, using this value eliminates 
the overshoots of the case without filtering, see Fig. 8 and Fig. 
9, and also improves rapidity, see Fig. 10. The filtering has 
also good effect on the command, see Fig.11, It smooths the 
control signal, thus it helps reducing the control effort and 
increasing the lifetime of the pump. 

 

Fig. 11: Flow rate for different values of the smoothing parameter 

IV. CONCLUSION 

In this work, a gain scheduling control strategy based on GPC 
with real time linearization of a neural internal model was 
introduced and implemented. To improve the performance of 
the designed controller, a filtering process is used to smooth 
the adaptation of the linearized model polynomials. The whole 
strategy is applied to a highly nonlinear benchmark system: 
the ACUREX solar parabolic trough collector plant. The 
results showed satisfying results in rejecting the effects of 
abrupt changes of the two measured disturbance and in 
reference tracking. After applying the smoothing process, 
improvements are introduced in terms of overshoots damping, 
rapidity increasing and smoothing the control signal. Finally, 

as an idea of a future work ,  could be updated according to 
the variation of the reference and the measured disturbances. 
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