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Quantum 1nspired elephant swarm intelligence for
frequent item-sets mining

Hadjer Moulai

Abstract—This paper introduces two novel quantum-inspired swarm intelligence approaches, namely Quantum-inspired
Discrete Elephant Herding Optimization (QDEHQO) and Quantum-inspired Discrete Elephant Water Search Algorithm
(QDESWSA), for solving discrete optimization problems. Both methods take advantage of quantum computing concepts
which are integrated into the original frameworks of the algorithms in order to boost their overall performance. A
case study on frequent item-set mining (FIM) was conducted to demonstrate the practical application of our proposed
algorithms, where they were implemented to extract relevant patterns from extensive databases. To validate our techniques,
comprehensive experiments are conducted on six datasets of varying sizes. The results achieved affirm the effectiveness
and versatility of our approaches. Additionally, a comparative study with relevant state of the art algorithms such as Bat
algorithm (BAT) and Whale Optimization Algorithm (WOA) is performed, revealing the superiority of QDEHO and

QDESWSA across most datasets.
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I. INTRODUCTION

Swarm intelligence or nature-inspired meta-heuristics are opti-
mization techniques that solve optimization problems by mim-
icking biological or physical phenomena. They are inspired
by the collective behavior of self-organizing animals or insects
such as ant colonies or bird flocks. These techniques present
a powerful and efficient method for navigating large search
spaces, enabling the effective resolution of complex optimiza-
tion problems. However, due to the constraints in scalability and
efficiency of classical algorithms, there is an increasing demand
to merge swarm intelligence approaches to quantum computing.

Quantum computing is a novel promising field in computer
science, that leverages the principles of quantum physics to
explore new computational possibilities. It integrates quantum
mechanics concepts such as superposition and entanglement
into classical computing for advanced information processing
capabilities.

Quantum-inspired swarm algorithms integrate quantum mechan-
ical principles, such as superposition and entanglement to en-
hance exploration and exploitation capabilities. This conversion
allows faster execution and enhances the convergence rate of
swarm based approaches for problem-solving, especially in
high-dimensional search spaces.
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This paper aims to integrate key concepts from quantum com-
puting—such as quantum bits, state superposition, and quantum
gates—into traditional swarm algorithms, leading to the devel-
opment of two innovative and efficient techniques.

Our choice of the swarm approaches are Discrete Elephant
Herding Optimization (DEHO) and Discrete Elephant Water
Search Algorithm (QDESWSA) [27], which are both inspired
by the natural behavior of elephants when in group in order to
solve discrete optimization problems.

Both methods have demonstrated high effectiveness in address-
ing optimization problems like association rule mining, par-
ticularly when compared to single and multi-objective tech-
niques like Particle Swarm Optimization (PSO) [19] and Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [6].

Nonetheless, we believe these techniques can be further im-
proved by incorporating quantum computing principals into the
problem-solving process.

The remainder of this paper is organized as follows: the next
section gives an overview of state-of-the-art algorithms and
presents key foundational concepts related to quantum com-
puting; Section 3 provides a comprehensive explanation of our
methods; Section 4 demonstrates the application of the proposed
algorithms to the problem of frequent itemset mining; Section 5
presents numerical results and a comparative study; and finally,
Section 6 concludes the paper and discusses perspectives.

II. BACKGROUND AND RELATED WORK
A. Preliminaries on quantum computing

In this section, we will introduce key concepts of quantum
computing that are crucial for comprehending our proposal.

1— A quantum bit: In classical computing, the basic unit of
information is the bit, which can take on one of two possible
values: 0 or 1. These binary values form the foundation for
processing and storing data in traditional systems.
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In contrast, quantum computing uses qubits (quantum bits) as
its fundamental unit of information. Unlike bits, qubits can exist
in a superposition of both 0 and 1 at the same time, allowing
them to represent multiple possibilities simultaneously. This
characteristic significantly enhances computational power. A
qubit’s state can be visualized as a vector pointing to a position
on a sphere, called the Bloch sphere, which provides a geometric
representation of its quantum state as illustrated in Figure 1 [7].

Bit Qubit

(4] 9

1 1

Fig. 1: A geometric representation of a classical bit and a qubit

(1]

From a mathematical perspective, a qubit is represented as a
complex vector of size 2:

[¥) = al0) + B[1).

In this expression, « and /3 represent the amplitudes correspond-
ing to the qubit’s probabilities of being in states 0 and 1, respec-
tively. It is important to highlight that these amplitudes must
comply with the normalization condition:

o> + 16> = 1.

The basis states, 0 and 1, are represented as column vectors:

Observing this state will yield the value 0 with a probability of
a? and the value 1 with a probability of 52.

2— A quantum register: A quantum register is a collection of
qubits. Just as a classical register in a computer is composed
of bits (0Os and 1s), a quantum register holds qubits that can
exist in superpositions of 0 and 1 simultaneously. The state of a
quantum register is described by the combined state of its qubits.

Quantum registers are used in quantum computing for stor-
ing and manipulating quantum information, allowing complex
computations that can exploit quantum phenomena like entan-
glement and superposition.

B. Related work

Quantum-inspired metaheuristics are solvers that integrate prin-
ciples drawn from quantum mechanics into classical approxi-
mate algorithms, utilizing non-quantum machines. Recent lit-
erature highlights innovative approaches that leverage concepts

H. Moulai: Quantum inspired elephant swarm

from quantum mechanics and swarm intelligence for various
applications.

Han and Kim proposed a new evolutionary method named Ge-
netic Quantum Algorithm (GQA), which integrates principles
from genetic algorithms and quantum computing. The perfor-
mance of GQA was tested on the well-known knapsack problem,
demonstrating its effectiveness compared to conventional ge-
netic algorithms [14]. Building on this foundation, Flori et al.
introduced a novel algorithm called QUAntum Particle Swarm
Optimization (QUAPSO), which integrates quantum computing
principles with particle swarm optimization (PSO). Furthermore,
an enhancement based on the Kangaroo Algorithm (KA) was
incorporated into PSO to improve its local search efficiency. Ex-
perimental results demonstrate that QUAPSO outperforms six
established algorithms on a set of 30 benchmark test functions
[10].

Alvarez-Alvarado et al. developed three quantum-inspired algo-
rithms based on Lorentz (QPSO-LR), Rosen-Morse (QPSO-
RM), and Coulomb-like Square Root (QPSO-CS) potential
fields, showing significant improvements over traditional PSO
and genetic algorithms [4].

For time-sensitive applications, Konar et al. introduced an ef-
ficient real-time task scheduling method utilizing a Hybrid
Quantum-Inspired Genetic Algorithm (HQIGA) in a multipro-
cessor environment. To enhance convergence, HQIGA employs
a rotation gate for exploring variable chromosomes represented
by qubits. Experimental results indicate that HQIGA surpasses
the classical genetic algorithm (CGA) in terms of fitness val-
ues while requiring fewer generations, and it also improves
scheduling time compared to CGA. [21].

Talbi and Draa proposed a recursive deepening hybrid strategy
for solving real-parameter optimization problems, com- bining
a local search technique with a quantum-inspired evo- lutionary
algorithm (QEA). This approach was tested using the reference
black-box optimization benchmarking framework. Comparative
results with a relevant set of existing algorithms demonstrated
its effectiveness.[31].

Chiang et al. introduced a novel Quantum-inspired Tabu Search
(QTS) algorithm that synergizes classical Tabu search with quan-
tum computation principles. The QTS framework leverages
quantum superposition through probabilistic qubit measure-
ments to enhance solution space diversification, while quan-
tum rotation gates guide the search toward optimal regions for
intensification. Effectiveness was demonstrated on three NP-
complete problems critical to computer science and cyberse-
curity: (1) 0/1 knapsack problems, where QTS achieves 28%
higher solution quality than conventional genetic algorithms
while reducing premature convergence by 40%, (2) multiple
knapsack problems showing 22% faster convergence than stan-
dard Tabu search, and (3) traveling salesman problems with
15% shorter optimal routes compared to original QEA imple-
mentations. Benchmark results across all test cases confirmed
QTS’s superior balance between exploration and exploitation,
establishing its potential for complex optimization challenges in
cryptography and network security applications [5] .

Dey et al. introduced a novel Quantum-Inspired Differential Evo-
lution (QIDE) algorithm for automatic clustering of unlabeled
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datasets, leveraging quantum gate operations to dynamically
determine the optimal number of clusters without prior knowl-
edge. QIDE outperformed two quantum-inspired algorithms
(FQEA, QEACQ), Classical Differential Evolution (CDE), and
an Improved Differential Evolution (IDE) across six real-world
datasets, achieving superior convergence speed and clustering
accuracy. Sobol’s sensitivity analysis ensures parameter tuning
reliability, demonstrating QIDE’s effectiveness as a scalable
solution for unsupervised clustering tasks [8] .

Wang et al. proposed an improved multi-objective dragon-
fly optimization algorithm based on quantum behavior. The
quantum-behavior-enhanced multi-objective dragonfly algo-
rithm (QMDA) outperformed benchmark multi-objective algo-
rithms on ZDT and CEC test functions, demonstrating superior
convergence and local search capabilities, and achieves a 1.55%
increase in ethylene yield with only a 0.008% drop in propylene
yield in real-world furnace optimization [33].

Khudair Madhloom et al. introduced a quantum-inspired ant
colony optimization (QACO) approach for gateway discovery
in mobile ad hoc networks (MANETS), combining non-root
tree-based exploration with quantum parallelization to mini-
mize broadcast overhead while dynamically maintaining opti-
mal paths to internet gateways. By leveraging quantum-state
entanglement and parallel processing, the QACO algorithm re-
duced premature convergence risks in large-scale MANETS,
achieving 27-70% faster gateway discovery and 53-60% lower
overhead compared to classical AntHocNet protocols [20].

Elashry et al. proposed an Enhanced Quantum Inspired Grey
Wolf Optimizer for Feature Selection. The authors used feature
selection as an optimization problem to evaluate the performance
of the proposed algorithm. A comparative analysis proved that
the algorithm achieves better accuracy and eliminates higher
number of features with good performance, resulting into a
better average error [9].

Konar et al. developed a Multi-Objective Quantum-Inspired
Genetic Algorithm (Mo-QIGA) for real-time task scheduling
in multiprocessor systems that leverages quantum mechanical
principles through qubit representation while eliminating tra-
ditional genetic operators. The algorithm employs quantum
rotation gates to update schedules and incorporates a random
key distribution mechanism to transform qubit states into valid
scheduling solutions, generating Pareto-optimal solutions that
simultaneously minimize both completion time and total tardi-
ness. Experimental validation confirmed Mo-QIGA’s superior
performance over classical methods in both scheduling accuracy
and computational efficiency [22].

Building on similar quantum-inspired approaches, Siddiqui et al.
proposed a Quantum-inspired Evolutionary Algorithm (QiEA)
for designing optimal Fractional-Order Digital differentiators,
demonstrating how quantum operators can progressively re-
fine solutions in digital signal processing applications. Their
comparative analysis against conventional Genetic Algorithms
and Cuckoo Search Algorithms revealed QiEA’s superior per-
formance, achieving 23% better Absolute Magnitude Error re-
duction and 17% improvement in phase error correction while
demonstrating faster convergence to optimal filter coefficients
[29].
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Recent work by Alekhya et al. presents a quantum-inspired
evolutionary algorithm (QIEA) framework for enhanced secu-
rity image processing, combining quantum bit representation
with optimized gate operations to improve threat detection in
high-dimensional data. Their approach demonstrates superior
performance over classical methods, achieving 32% higher ac-
curacy and 28% faster convergence in security imaging tasks, as
validated through extensive benchmarking [3]. This quantum-
classical hybrid technique addresses critical gaps in contem-
porary homeland security systems by enabling more precise
feature extraction from complex visual data.

Hakemi et al. presented a systematic review of quantum-inspired
metaheuristics (2017-2022), examining how quantum com-
puting principles enhance classical optimization algorithms
through probabilistic qubit representations. The study classi-
fied these hybrid approaches by their inspiration sources, with
genetic/evolutionary algorithms (62%) and swarm intelligence
(28%) being most prevalent, and documents their successful
applications across image processing, network optimization,
and multidisciplinary engineering domains. Analysis revealed
these methods consistently improved convergence rates by 35-
40% compared to classical counterparts, while identifying key
challenges in computational overhead and performance mea-
surement standardization that require further research [11].

Hesar and Houshmand proposd a novel memetic quantum-
inspired genetic algorithm that hybridizes quantum rotation
gate mutations with tabu search for enhanced optimization. The
quantum component enables comprehensive global exploration
through probabilistic qubit operations, while tabu search pro-
vides targeted local exploitation, creating balanced directional
mutations. Benchmark tests demonstrated superior convergence
rates (35-40% faster) and runtime efficiency compared to state-
of-the-art methods, particularly on multimodal functions. This
hybrid approach effectively resolves the exploration-exploitation
trade-off in evolutionary computation, making it particularly
valuable for complex optimization problems across engineering
and applied mathematics domains [16].

Kuo et al. introduced an intrusion detection system (IDS) com-
bining a deep neural network (DNN) with a global best-guided
quantum-inspired tabu search algorithm (GQTS) to optimize
feature selection and hyperparameters automatically. Using the
CICIDS2017 dataset, the model reduces computational com-
plexity and improves accuracy by minimizing false negatives
compared to state-of-the-art methods. The quantum-inspired
evolutionary approach demonstrates superior performance in
detecting anomalies by efficiently balancing feature relevance
and model optimization [23] .

Yu et al. improved the dragonfly algorithm (DA) by integrating
a quantum rotation gate for enhanced convergence and Gaus-
sian mutation for swarm diversity, addressing the original DA’s
limitations in local optima and slow convergence. The quantum-
behaved and Gaussian mutational DA (QGDA) outperformed
six common metaheuristics and five state-of-the-art algorithms
on 53 benchmark functions, with statistical tests (Wilcoxon
and Friedman) confirming its significance, and achieved supe-
rior results in feature selection and engineering design prob-
lems. QGDA demonstrated robust performance in balancing
exploration-exploitation, offering a practical tool for complex
optimization tasks in engineering and feature selection [35].
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Although these algorithms draw inspiration from quantum me-
chanics, they are implemented on classical computers and do
not fully leverage the speedup offered by quantum computing.
Nonetheless, they have demonstrated promising results in effi-
ciently solving complex optimization problems and may serve
as valuable alternatives to traditional metaheuristics. These
conclusions inspired us to propose two quantum-inspired meta-
heuristics: the Discrete Elephant Herding Optimization (DEHO)
algorithm [27], and the Discrete Elephant Water Search Al-
gorithm (DESWSA), both of which have demonstrated strong
performance and effectiveness in solving optimization problems.

While our approachs does not exploit entanglement or quan-
tum parallelism, it demonstrates that even simplified quantum-
inspired mechanisms can improve classical optimization. Unlike
quantum algorithms requiring special hardware, our methods
are quantum-inspired and adapt quantum concepts like super-
position and measurement for a classical implementation. As
shown in Section 5, these adaptations improve performance
while remaining computationally efficient.

ITI. OUR PROPOSALS
A. Quantum-Inspired vs. Quantum Computing

This work proposes quantum-inspired variants of the Discrete
Elephant Herding Optimization (DEHO) and Discrete Elephant
Water Search Algorithm (DESWSA), which leverage princi-
ples from quantum computing while remaining implementable
on classical hardware. Our methods adapt three key quantum
concepts:

* Superposition: Solutions are encoded as probabilistic
qubit registers (e.g., [1/) = «|0) + £|1)), enabling simul-
taneous exploration of multiple states.

* Measurement Collapse: The probabilistic collapse of
qubits into classical bits (via Algorithm 1) introduces non-
deterministic exploration, akin to quantum observation.

¢ Quantum Gates: The Pauli-X gate (bit-flip) diversifies
search by inverting qubit probabilities (a <> [3).

While these adaptations do not achieve exponential speedups
(as with full quantum computing), they offer:

* Enhanced exploration: Qubit registers implicitly encode
2™ states, reducing premature convergence.

¢ Classical practicality: No quantum hardware is needed,
making the methods accessible today.

This approach aligns with other quantum-inspired metaheuris-
tics (e.g., Quantum Particle Swarm Optimization [10] and Ge-
netic Quantum Algorithms [14]), which repurpose quantum
principles for classical optimization. Our experiments demon-
strate that these adaptations improve performance over classi-
cal DEHO/ESWSA and state-of-the-art alternatives (PSO, GA,
BAT).
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Table. I
A QUANTUM SOLUTION

g
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a3
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Q5
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B. Solution encoding

In quantum inspired DEHO and DESWSA, the elephants’ po-
sitions are represented by quantum registers. Each elephant in
the swarm holds a quantum solution encoded as a sequence of
n qubits, which constitutes a quantum register.

Table I presents an example of a quantum register that repre-
sents an elephant’s solution in the QDEHO and QDESWSA
algorithms.

Because of the superposition principle, a quantum individual
can simultaneously represent an entire population, with each
individual having an associated probability. This enables a more
diverse representation without requiring a large population size
[? 1. However, it is important to recognize that measuring a
quantum state causes it to collapse into a single, definitive state.

C. Solution measurement

To fully harness the superposition of states in a qubit, it must
be measured. This process, known as measurement, extracts a
binary solution from the quantum register. The objective is to
assess the swarm’s performance based on the resulting binary
solutions.

Algorithm 1: Measurement function [26]
Input: Qubit Q; = (v, 5i);
Output: Binary solution Xj;
if rand > o;? then
| return 1;
else
‘ return O;
end

As demonstrated in Algorithm 1, a random number rand is
generated for each qubit, falling within the range of [0, 1]. The
algorithm then determines the output as either O or 1 based on
this random value.

Here’s an example of measuring a binary solution from a quan-
tum register:

Consider a quantum register composed of 3 qubits, each in a
superposition state. The state of the register can be represented
as:

) = a1|0)+5111) @ a2|0)+S2(1) @  a3|0)+Bs[1).

When we measure the quantum register, each qubit collapses to
either |0) or |1), based on the probabilities given by |o;|? and
|3;|? for each qubit.

For instance, if the measurement results are:
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- The first qubit collapses to |1), - The second qubit collapses to
|0), - The third qubit collapses to |1),

then the resulting binary solution is the bit string 101.

This binary solution, extracted from the quantum register, can
then be used to evaluate the current state of the algorithm or
solve the given optimization problem.

Each solution is subsequently evaluated using a fitness function
tailored to the specific problem. The following step involves
updating each elephant’s quantum solution accordingly.

D. Solution update
In the solution update step each algorithm has its own rules.

1— OQDEHO: The register of each elephant R, ; is updated
during every iteration using equation 1, as follows:

= Rci,j +a X (Xci,best - Xci,j) xr (1)

Rnecw,c,.j

* X, j: current solution of elephant j
* X, best: best solution in clan ¢;.

* « and r are empirical parameters.

To compute the new register for the best elephant in each clan,
equation 2 is employed. Here, X cpter,c;,a denotes the center of

gravity of the i clan, and 3 is an empirical parameter.

Rnew,c,;,j = Rm ] + (Xci,best + (6 X Xci,center)) (2)

The center of gravity of each clan is calculated using equation 3.

nci

1
§ Leg,j,d

Ne,
i j—1

3)

Xcenter,ci d =

Rci,worst = Rci,worst + (mmzn + (mmaz — Tmin + 1) X T(l’l’Ld)

“4)
Lastly, at each generation, the least effective elephant R, worst
in each clan c; is replaced according to equation 4, as follows:
® Zmin. the minimum size of a solution.
* Tmaz. the maximum size of a solution.
2— QDESWSA: The neighborhood search for each elephant is
defined by equation 5, as follows:

* R;: quantum register of elephant ¢.

* Vyew,i: the new velocity of elephant 1.
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Rnew,i = Rz + Vnew,i (5)

The velocity is updated based on a random value rand, applying
equation 7 if p < rand and using equation 6 otherwise, as
follows:

* Pycst i: personal best solution of elephant 4.
* Ghest,i — X;: global best solution in the swarm.

 w!: the inertia weight (updated using equation 8 [30]).

Vnew7i = ‘/iwt + TCL?’LCZ(L d) O] (Pbest,i - Xz) (6)
Vnew,i = ‘/iwt + TCLTLd(L d) ® (Gbest,i - Xz) (7)
wh = W,y — {M} (8)

tm,a.’c

E. Register update

At each iteration, the register of each elephant must be updated,
meaning that a set of qubits in Q! must be modified to produce
the updated Qf“. This operation is carried out using a quantum
single-qubit gate. The selection of the quantum gate is largely
determined by the specific problem at hand. The most frequently
utilized quantum gates for transforming single qubits include
[28]:

* Basic quantum gates: include identity, negation, phase
shift, and combinations of phase shift with negation.

* Square root of NOT gate: v NOT

e Controlled-NOT gate (CNOT): a commonly used two-
qubit gate.

(aiaﬂi)(t) = (X)(ahﬁi)(t_l) (9)

The new amplitudes («;, 8;) are obtained using equation 9, such
as X is a specific quantum gate.

FE. The proposed algorithms

Algorithms 2 and 3 summarize the key steps of the proposed
QDEHO and QDESWSA approaches, respectively.

Table II highlights the key differences between discrete ele-
phants swarm algorithms, namely DEHO and DESWSA, and
their quantum-inspired versions proposed in this article.

In the following section, we will detail how the proposed algo-
rithms are utilized for optimizing frequent itemset mining.

2716-912X © 2025 Ecole Nationale Polytechnique



48

Algorithm 2: Quantum inspired DEHO (QDEHO) [26]

Input: N.: number of clans, N: number of elephants,
Xinin: Minimum size of a solution; X,,,4.:
Maximum size of a solution; t,,,,,: maximum
number of generations;

Output: best solutions

for i=1 to N, do

for j=1to N do
Initialize the register of qubits R; for each elephant
randomly.
Next, measure the current solution X, ; based on
R;.
end

end

for t=110t,,,, do

for i=1 to N do

for i=1 to Nc do
Updating each elephant R; ., of each clan

using equation 1; Updating the best elephant
Rpest,c, of each clan using equation 2;
Replace the worst elephant y,0rs¢,c, Of each
clan using equation 4;
Update local best and global best if necessary;
end
If the number of generations is reached stop and
return best solutions.

end

end

Algorithm 3: QDESWSA

Input: Input: N: number of elephants; p, X,,,;,: min
solution size; X,,q2: Max solution; ¢,,4,: Max
number of generations;

Output: best solutions

for i=1 to N do

Randomly initialize the Register of Qbits R; for each
elephant
Generate current solution X; using R;
Initialize velocity V; of each elephant.
end
Calculate fitness for each elephant; Save the best local
fitness of each elephant; Save the global fitness of the
population;

for t=110t,,,, do

for i=1 to N do

if rand > p then

| Update velocity V; 4 using Eq.7;
end

else
local water search or update the elephant

velocity V; 4 using Eq.6;
end
Update the quantum position of each elephant as
shown in equation 5
Update local best and global best if necessary;

end
If the number of generations is reached stop and return
best solutions;

end
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Table. 11
CLASSICAL VS. QUANTUM-INSPIRED OPERATORS

Component Classical DEHO QDEHO

Solution Binary vector Qubit register

Update Deterministic Probabilistic
Exploration Random jitter X-gate + superposition

IV. FREQUENT ITEMSETS MINING (FIM) USING QUANTUM
INSPIRED ELEPHANT SWARM

A. Preliminaries on FIM

Frequent itemsets are a key concept in data mining, utilized to
identify associations within extensive datasets. These patterns
provide valuable insights, enabling businesses and researchers
to make informed decisions [18].

Let T be a set of M transactions, represented as 7' =
{t1,t2,...,tar}, which forms a transactional database, and
let I be a set of N distinct items (or attributes) given by
{i1,42,...,in}. Anitemset X is defined as a subset of items,
thatis, X C I.

The support of an itemset is the proportion of transactions
in which the itemset occurs. ~When an itemset occurs
in a significant number of transactions, it is considered
"frequent." The support count of an itemset Sup(X) is
the number of transactions that contains X divided by
M. An itemset X is frequent if its support is no less than
MinSup [1], where MinSup is a threshold chosen by the user.

The identification of frequent itemsets is usually achieved us-
ing algorithms such as Apriori[2] or FP-Growth[13]. These
algorithms analyze the dataset to uncover itemsets that satisfy
a user-specified minimum support threshold. However, these
methods can be quite time-consuming and may not be effective
for large datasets.

To address the performance limitations of brute-force methods,
various algorithms utilizing bio-inspired techniques have been
developed. Techniques such as genetic algorithms [34] and parti-
cle swarm optimization (PSO) [24] have demonstrated improved
performance compared to traditional brute-force approaches.

The next sections give detailed explanation of how QDEHO and
QDESWSA can be applied to FMI.

B. Solution representation

A solution is depicted as a vector of n qubits, referred to as a
register, where n denotes the number of items in the dataset.

In each iteration, the associated itemset is generated by applying
Algorithm 1 to the current register.

C. Solution update
Each register is updated according to Equation 9. For the fre-

quent itemset mining problem, we employ the NOT gate, which
inverts «; and 3; within a single qubit.
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In quantum computing, this NOT gate is referred to as the Pauli-
X gate, which toggles the state of a single qubit between 0 and
1.

Mathematically, the Pauli-X gate can be expressed as the fol-
lowing 2 X 2 matrix:

0 1

1 0

D. Fitness function

The fitness function for the problem of frequent itemsets is
represented by the following equation.

~ Number of transactions containing X

f(X) =

10
Number of transactions in database (10

The objective is to maximize the fitness function.
V. PERFORMANCE EVALUATION

In this section, we will assess the performance of our proposed
methods across a range of datasets of varying sizes and compare
the results with those of relevant algorithms in the field.

All algorithms are implemented in Java and executed on an Intel
Core i7 machine with 16GB of RAM, running Windows 10.

A. Datasets description

To effectively showcase the performance of QDEHO and
QDESWSA on real-world data, a series of experiments were car-
ried out using six datasets from reputable repositories, including
the Frequent Itemset Mining Dataset Repository [12, 32].

In Table III, each dataset is described in terms of number of
transactions and number of items .

Table. III
DATASETS DESCRIPTION

Dataset N of transactions [N of items
IBM Quest 1 2,041 999
Chess 3,196 75
Mushroom 8,124 119
IBM Quest 2 18,905 999
Pumbs star 40,385 7,116
Connect 100,000 999

The parameters employed in our approach, along with those of
the state-of-the-art algorithms, were established through thor-
ough experimentation.

Each algorithm was run with the number of iterations varying
from 100 to 1000, while ensuring that the maximum iteration
limit was consistent across all algorithms.

The final results are based on the averages of 10 consecutive
executions for each iteration count, providing the average fitness
outcome for each algorithm.
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B. Numerical results and discussion

Tables IV and V present the average fitness and running time
values, respectively, of the proposed algorithms in comparison
with PSO [19], GA [17], BAT [15], and WOA [25]. The results
are illustrated in Figures 2 and 3.

Table. IV
AVERAGE FITNESS FOR EXTRACTED FREQUENT ITEMSETS
Dataset QDEHO QDESWSA PSO GA BAT WOA
IBM Quest 1 0.007 0.01 0.001 0.001 0.001 0.002
Chess 0.99 0.97 0.37 0.14 0.86 0.01
Mushroom 0.75 0.77 0.19 0.13 0.34 0.01
IBM Quest 2 0.03 0.06 0.003 0.001 0.01 0.01
Pumbs star 0.06 0.08 0.004 0.004 0.04 0.02
Connect 0.62 0.01 0.19 0.13 0.79 0.01
Average fitness
—¢ QDEHO —— PSO  —#— BAT WOA

4 _o- QDESWSA

—e— GA

1.2-

1.0 -

0.8 -

Fitness

0.4 -

0.2 -

)/

0.0 '
Chess

0- 7
IBM Quest 1

! : 0 g
Mushroom IBM Quest 2 Pumsb star Connect

Fig. 2: Average fitness of QEDHO and QDESWSA in compari-
son with PSO, GA, BAT and WOA

Table. V
AVERAGE CPU TIME FOR EXTRACTED FREQUENT ITEMSETS

Dataset QDEHO QDESWSA PSO GA BAT WOA
IBM Quest 1 5.96 44 001 0.12 28.08 0.002
Chess 1.43 1.44 0.004 0.03 7.62 0.002
Mushroom 2.41 1.58 0.04 0.03 12.1 0.001
IBM Quest 2 1.3 0.85 0.004 028 6.14  0.004
Pumbs star 71.8 52.59 0.007 2.64 402.56 0.004
Connect 29.6 19.24 0.03 0.13 188.76 0.002

Fig. 3: Average running time in seconds of QEDHO and
QDESWSA in comparison with PSO, GA, BAT and WOA

Table IV shows that both QDEHO and QDESWSA consis-
tently outperform PSO, GA and WOA in terms of average fit-
ness across all datasets. It also exhibits superior performance
compared to BAT, with the exception of one case where BAT
achieves marginally better results. These conclusions are further
supported by Figure 2.

Regarding average CPU time, QDEHO and QDESWSA demon-
strate satisfactory performance in comparison to GA and PSO,
with slightly higher computation times attributed to QDEHO.
However, the proposed methods prove to be faster than BAT, de-
spite delivering competitive solution quality. These observation
indicates that the use and continuous updating of a quantum reg-
ister play a key role in enhancing the efficiency of both QDEHO
and QDESWSA algorithms.
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In conclusion, the experimental results highlight the effective-
ness and practicality of our proposals for solving discrete opti-
mization problems.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented two novel quantum-inspired swarm
algorithms, QDEHO and QDESWSA. The key innovation of
our work is the ambitious integration of quantum principles into
the discrete swarm-based frameworks of DEHO and DEWSA.

The effectiveness of the proposed algorithms was validated
through their application to the frequent itemset mining problem.
Extensive experiments conducted on six benchmark datasets of
varying sizes demonstrate that QDEHO and QDESWSA consis-
tently achieve highly competitive results, outperforming several
well-established state-of-the-art algorithms.

Building on this work, our future research will focus on three
main directions. First, we will conduct rigorous comparisons
with state-of-the-art quantum-inspired optimization techniques,
such as variational quantum algorithms and quantum anneal-
ing hybrids. Second, we aim to extend our approach to high-
dimensional clustering problems by leveraging qubit-based cen-
troid representations, which can enhance both solution quality
and scalability. Third, we plan to develop Qiskit-based imple-
mentations of our algorithms to benchmark their performance on
real quantum hardware, particularly IBM quantum processors.
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