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Efficient Face Recognition Using
Embedding-Based Distillation

Hana Remma, Chaimaa Ouarezki, Youcef Ouadjer, Mourad Adnane, and Sid-Ahmed Berrani

Abstract—Knowledge distillation (KD) facilitates the compression of large, high-performing neural networks into
efficient student models, enabling deployment on resource-limited devices like mobile phones and IoT systems. This
paper introduces a KD methodology, which involves training a student to capture a teacher’s soft labels, intermediate
feature representations, and ground truth labels, ensuring both compactness and accuracy. Applied to face recognition,
our hybrid KD framework trains a MobileFaceNet student under an InceptionResNetV1 teacher, achieving 90.40%
accuracy and a 96.25% AUC, outperforming lightweight models while remaining suitable for edge devices. These results
highlight the potential of KD to enable robust, scalable face recognition solutions for real-world, resource-constrained
environments.
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NOMENCLATURE

KD Knowledge Distillation.
FAR False Acceptance Rate.
FRR False Rejection Rate.
EER Equal Error Rate.
AUC Area Under the Curve
ROC Receiver Operating Characteristics

I. INTRODUCTION

Face recognition is a technology with numerous real-world ap-
plications, such as biometric authentication, video surveillance,
and human-computer interaction. Recent advances in deep learn-
ing have led to high-performing models like ArcFace [1], Cos-
Face [2], and MagFace [3], which achieve remarkable accu-
racy on large-scale benchmarks. However, these state-of-the-
art (SOTA) models typically rely on deep architectures with
hundreds of millions (100) of parameters and high computa-
tional complexity, making them unsuitable for deployment on
resource-constrained devices such as smartphones, IoT nodes,
and embedded systems.

To address this limitation, several strategies have been explored
to reduce model size while preserving accuracy. Model compres-
sion techniques, including pruning [4] and quantization [5], aim
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to eliminate redundant weights or reduce numerical precision.
While these methods significantly reduce storage and inference
costs, they often require meticulous fine-tuning and may re-
sult in performance degradation, especially on challenging face
recognition tasks. For example, the lightweight architecture of
ShuffleFaceNet [6], constructs compact models from the ground
up using depthwise separable convolutions or channel shuffling.
These models offer faster inference and lower memory foot-
prints but still fall short in recognition accuracy compared to
their larger counterparts.

An alternative and increasingly popular direction is knowledge
distillation (KD), initially introduced by Hinton et al. [7, 8],
which transfers knowledge from a large teacher model to a
smaller student. In the context of face recognition, KD has
been applied to improve embedding quality by aligning student
features with those of a pretrained teacher network.

In this paper, we propose a lightweight and effective face recog-
nition framework that leverages a hybrid knowledge distillation
approach. Our method enables a compact student model to be
trained under the supervision of a pre-trained teacher network
using both classification loss and embedding-based distillation
loss. Unlike existing distillation methods that often require com-
plex formulations or additional modules, our approach adopts
a simple yet powerful dual-loss strategy that encourages the
student to simultaneously learn identity labels and replicate the
teacher’s rich embedding space. This ensures that the student
inherits both the discriminative capability and relational struc-
ture of the teacher, achieving a balance between compactness
and accuracy suitable for on-device deployment. This paper is
organized as follows: Section II. dives into the methodology
of the proposed knowledge distillation framework. Section III.
provides interpretation and discussion of the obtained results.
Finally, section IV. concludes the paper with future directions.

II. METHODOLOGY

Knowledge distillation (KD) offers a robust set of benefits, mak-
ing it a pivotal technique for model compression and deploy-
ment. It enables a compact model, often termed the student,
with significantly reduced computational cost, to emulate the
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Fig. 1: Conceptual diagram of knowledge distillation, illustrating the teacher model (top) transferring soft labels to the student
model (bottom), alongside ground truth labels shaping the total loss.

capabilities of a larger, high-performing teacher model, facil-
itating deployment on resource-constrained platforms such as
mobile devices or IoT systems.

As illustrated in Figure 1, the InceptionResNetV1 [9] and Mo-
bileFaceNet [10] are used as teacher and student models respec-
tively. The main advantage of using InceptionResnNetV1 is that
it is trained on large publicly available datasets, and it encom-
passes general face feature representations. The MobileFaceNet
on the othe hand is a compact deep neural network dedicated
for facial recognition applications.

It is worth noting that the structure of InceptionResNetV1 and
MobileFaceNet are different, the motivation for this difference
is to enable knowledge transfer across diverse architectures, as
evidenced by [11] and [12]. This flexibility allows tailoring
student models to specific hardware or latency requirements
while leveraging the teacher’s expertise.

The proposed KD framework relies on three critical components:
the teacher’s soft labels, intermediate feature representations,
and ground truth labels from the dataset. Drawing on founda-
tional contributions by Hinton et al. [7] and Deng et al. [1], the
following subsections detail the learning mechanisms, weaving
mathematical precision with practical considerations.

A. Soft Labels: Capturing Class Relationships

The teacher, a deep neural network with significant capacity, pro-
duces soft labels-probability distributions over classes for each
input that encode inter-class similarities. The distilled model
often matches or surpasses the teacher’s performance on specific
tasks despite its smaller size. By learning softened probability
distributions, the student can replicate nuanced patterns, offering
more information than binary hard labels. The teacher’s logits,
zt = [zt,1, . . . , zt,C ], where C denotes the number of classes,

are softened using a temperature parameter T :

Pt,i =
exp(zt,i/T )∑C
j=1 exp(zt,j/T )

(1)

where Pt,i is the softened probability for class i. Similarly
to the teacher model, the student model produces soft-labels
probability Ps,i using its logits zs = [zs,1, . . . , zs,C ] to mimic
teacher’s output:

Ps,i =
exp(zs,i/T )∑C
j=1 exp(zs,j/T )

(2)

To align these distributions, the student minimizes the Kullback-
Leibler (KL) divergence, defining the distillation loss:

LKD = T 2
C∑
i=1

Pt,i log
Pt,i

Ps,i
(3)

The T 2 scaling ensures the loss remains balanced for large T ,
enabling the student to internalize the teacher’s generalizations,
particularly for complex class boundaries [7].

By leveraging soft labels, KD enhances generalization capabil-
ity of the student, and provides richer information than hard
labels. These labels reveal class similarities, enabling the stu-
dent to handle ambiguous inputs effectively. For example, a
teacher assigning probabilities to “dog” and “wolf” guides the
student toward nuanced patterns. Hinton et al. [7] showed KD-
trained students outperform hard-label-trained models on com-
plex datasets. Peng et al. [13] found that KD promotes smoother
class distributions in remote sensing tasks, improving robustness
to input variations.
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B. Intermediate Feature Representations

Building on soft labels, and feature embeddings of the student,
it is possible to learn robust intermediate representations. A
method advanced by Deng et al. [1] in their ArcFace framework,
proposed a highly discriminative face feature Alorithm, based
on an additive angular margin penalty term m.

In this work we use the ArcFace additive angular margin penalty
to enhance the discriminative power of deep features for face
recognition. Given an input feature embedding vector xs ∈ Rd,
produced by the student model, and a weight vector Wi ∈ Rd

for class i, both are first normalized to compute the cosine
similarity as cos(θi) = x>Wi

‖x‖‖Wi‖ . For the ground-truth class y,
an angular margin m is added in the cosine space, modifying
the similarity as:

cos(θy +m) = cos(θy) cos(m)−
√

1− cos2(θy) sin(m) (4)

Finally the student logits are scaled by a factor s, based on:

zs,i =

{
s · cos(θy +m), if i = y

s · cos(θi), otherwise
(5)

This formulation effectively increases the angular margin be-
tween classes in the normalized hypersphere, leading to im-
proved inter-class separability and intra-class compactness.

C. Ground Truth Labels

To ensure task-specific accuracy, the student is trained on ground
truth labels via cross-entropy loss:

LCE = −
C∑
i=1

yi log(Ps,i) (6)

where yi is the one-hot ground truth label, and Ps,i is the stu-
dent’s probability (with T = 1). This loss anchors the student’s
predictions to the dataset, balancing the teacher’s influence with
direct task learning [7].

D. Combined Objective

The student’s training optimizes a composite loss:

Ltotal = α · LKD + (1− α) · LCE (7)

where α ∈ [0, 1] balances distillation and cross-entropy losses.
Typical values include α = 0.5˘0.9, T = 2˘10. This balance is
often an empirical, enabling the student to synthesize teacher
insights and ground truth effectively [7,11,12,14]. These hyper-
parameters require careful tuning, often through validation, to
reconcile objectives like teacher mimicry and task fidelity.

E. Experimental Setup

Our facial recognition system is based on the MobileFaceNet
(student model), trained through knowledge distillation from
a high-capacity InceptionResNetV1 (teacher model). Training
was conducted using the Adam optimizer with a learning rate of
0.01 and weight decay of 10−4.

While teacher training is resource-intensive, KD limits this cost
to the student pre-training phase. The student requires minimal
resources for fine-tuning or deployment, reducing production
expenses.

In this work, we used the Labeled Faces in the Wild (LFW)
dataset [15], to pre-train and evaluate the MobileFaceNet model.
The LFW is a well established and commonly used dataset to
evaluate face recognition models. It contains over 13 000 images
of faces, with 5 749 identities, collected from the web, with three
different splits: train, evaluation and test sets.

III. RESULTS AND DISCUSSION

This section presents the results. First, a description of the
evaluation metrics is given. Then, results are presented with
an in-depth discussion. Finally, a comparison of the obtained
results with MobileFaceNet against state-of-the-art models is
presented.

A. Evaluation Metrics

We evaluated performance using the following standard metrics:

• Accuracy (%): Percentage of correctly classified pairs.

• FAR False Acceptance Rate (%): refers to the impostor
accepted as genuine.

• FRR False Rejection Rate (%): is the genuine rejected
as impostor.

• EER Equal Error Rate (%): is the point where FAR =
FRR.

• AUC (%): Area Under the Receiver Operating Character-
istics (ROC) Curve.

B. Obtained Results

Table. I
EXPERIMENTAL RESULTS OF THE PROPOSED METHOD

Accuracy (%) FAR (%) FRR (%) EER (%) AUC (%)

90.40 0.87 18.33 18.66 96.25

The experimental results illustrated in Table I, highlight the effec-
tiveness of the proposed KD approach in training a lightweight
face recognition model with high performance and low com-
putational cost. The MobileFaceNet student achieved a top-1
accuracy of 90.4%, an AUC of 96.25% (Figure 2), and a FAR
of 0.87%, demonstrating its capability to inherit rich represen-
tations from the InceptionResNetV1 teacher, which enhances
generalization and avoids overfitting typical of smaller models
trained from scratch.
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This approach is highly practical for resource-constrained de-
vices. The low FAR underscores the robustness of the learned
embeddings, critical for security applications like biometric
authentication, surpassing lightweight alternatives with less dis-
criminative features. However, the high FRR and EER (around
18%) indicate a limitation, likely due to dataset biases or insuffi-
cient feature diversity in the student model. To reduce FRR and
EER it is possible to explore the hyperparameter space by tuning
T , α, and the learning rate with advanced regularization like
dropout, batch normalization and early stopping. Overall, this
method balances performance and efficiency, offering a scalable
solution for real-world face recognition.

Fig. 2: ROC curve of MobileFaceNet trained via knowledge
distillation.

C. Comparison with State-of-the-Art Models

Table. II
COMPARISON WITH LIGHTWEIGHT AND HEAVYWEIGHT

SOTA MODELS

Model Accuracy (%) # of parameters (M)

Pyramid CNN [16] 85.5 -
DCMN [17] 90.00 0.5
ArcFace
(ResNet50) [1]

98.2 23.5

CosFace
(ResNet101) [2]

98.1 44.5

Ours (MobileFaceNet) 90.4 0.99

The distilled MobileFaceNet model is compared to state-of-
the-art models in terms of accuracy, and number of trainable
parameters in millions (M). Results are depicted in Table II.
Compared to Pyramid CNN [16] and DMCN [17] models, our
approach shows clear improvements in accuracy, making it suit-
able for embedded systems. While heavyweight models such as
ArcFace [1] (23.5M) and CosFace [2] (44.5M) outperform ours
in raw accuracy, they require significantly more computational
resources, making them less practical for edge devices.

IV. CONCLUSION

In this work we demonstrated the efficacy of knowledge distilla-
tion (KD) in crafting efficient, high-performing models for face

recognition, with broad implications for resource-constrained ap-
plications such as smartphone devices. Our hybrid KD approach,
employing MobileFaceNet as the student model under an Incep-
tionResNetV1 teacher, achieves 90.40% accuracy and 96.25%
AUC, outperforming lightweight models while remaining viable
for edge deployment. The methodology integrates soft labels,
feature alignments, and ground truth learning, ensuring the stu-
dent captures the teacher’s nuanced knowledge, as evidenced by
a robust False Acceptance Rate of 0.87%. Our appraoch has the
advantages of computational efficiency, cross-architecture versa-
tility, and it is tailored for real-time applications like biometric
authentication and IoT systems.

The elevated False Rejection Rate suggests refinement oppor-
tunities, with future research exploring multi-teacher or self-
distillation by leveraging an ensemble of teacher models that
combine their knowledge into a single student, merging diverse
strengths.
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