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Minimal Distortion Principle versus Back
Projection for Independent Vector Analysis

Soufiane Tebache, Adel Belouchrani, Lynda Berrah and Nacira Mendjel

Abstract—This paper deals with the scaling ambiguity issue in blind convolutive source separation when performed
in the frequency domain. It discusses the relationship between two major techniques, mainly the Minimal Distortion
Principle and the Back Projection, that allow to overcome the aforementioned indeterminacy. The Minimal Distortion
Principle minimizes the mean square difference between the separated sources and the sensor signals, while the back
projection recovers the sensor-observed amplitudes of each estimated source signal. Herein, we prove that the Minimal
Distortion Principle is a particular solution of the Back Projection. Another contribution of this paper consists of
exploiting one of the most beneficial outcomes of the Back Projection, that is spatial diversity. Our proposed approach
applies Single Input Multiple Output deconvolution to the outputs of the back projected source signals, after their
estimation by the Independent Vector Analysis algorithm. This method has the advantage of improving the estimation
accuracy and removing the channel effect. Experimental results show the effectiveness of our proposal with respect to
both the Minimum Distortion Principle and the conventional Back Projection solution.

Keywords—Back projection, Minimal Distortion Principle, Independent Vector Analysis, SIMO Deconvolution.

I. INTRODUCTION

Blind Source Separation (BSS) is a powerful tool for separating
mixtures of sources from a set of sensors, where neither the
source signals nor the mixing parameters are known. This prob-
lem leads to two types of indeterminacy: permutation and scal-
ing. When dealing with wide-band propagation, as in the speech
signal case, one faces the problem of convolutive mixtures. Ex-
isting solutions in the time domain lead to complex and time-
consuming computations. Efficient methods solve the underling
problem in the time-frequency domain using the Short-Time
Fourier Transform (STFT). The latter transforms the convolutive
BSS problem into several independent BSS problems with in-
stantaneous models, which can be solved using well-established
instantaneous BSS algorithms at each frequency bin. However,
the estimated source signals in each frequency bin have arbitrary
permutations and scaling that significantly affect the separation
performance. Various post-processing [1, 2] can be used to ad-
dress permutation ambiguity, but this increases computational
cost. A more elegant solution is Independent Vector Analysis
(IVA) [3], which uses the entire frequency spectrum as input,
instead of considering each frequency bin as an independent
BSS problem, to overcome the permutation ambiguity.

However, the scaling ambiguity remains and is equivalent to an
arbitrary filter of the source signals in the case of the aforemen-
tioned approach. The Minimum Distortion Principle (MDP) [9]
is a well-known method for dealing with such ambiguity, it se-
lects the separators that minimizes the mean square difference
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between the separated source signals and the sensor signals. An-
other technique, called Back Projection (BP) [16], can recover
the sources after separation to their sensor-observed amplitudes.

In this paper, we discuss the relationship between Minimal Dis-
tortion Principle (MDP) and Back Projection and prove that
the MDP is a particular solution of the Back Projection. We
observe that the Back Projection actually provides spatial di-
versity, which has not been exploited yet in the literature. Our
second contribution consists of using Single Input Multiple Out-
put (SIMO) deconvolution after separation. This is performed
through IVA for each output signal in order to take advantage
of the spatial diversity provided by the Back Projection. Such a
proposal allows performance enhancement in terms of signal to
distortion ratio with respect to reverberate time.

The paper is organized as follows: Section II. formulates the
BSS problem briefly, the proposed solution and the proof of
the MDP-BP relationship are provided in Section III., simula-
tion results are presented in Section IV., and finally, Section V.
concludes the paper.

II. PROBLEM FORMULATION

Let us observe, at time instant n, M signals, x(n) =
[x1(n), · · · , xM (n)], assumed to be the mixtures of L inde-
pendent source signals s(n) = [s1(n), · · · , sL(n)] according to
the following noiseless convolutive model:

xm(n) =

L∑
l=1

P−1∑
p=0

aml(p)sl(n− p) m = 1, ..,M (1)

x(n) =

P−1∑
p=0

A(p)s(n− p) (2)

where A(p), p = 0, ..., P −1, is theM×L transfer function ma-
trix, whose elements are denoted aml(p), and P is the impulse

Part of this paper was presented in the conference paper [18].
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response length. By assuming a significantly longer time analyz-
ing window than the impulse response length, it is possible to
express the convolution in the frequency domain as individual
multiplications for each frequency bin, as follows:

xTF (f, n) = A(f)sTF (f, n) (3)

where xTF (f, n) represents a column vector with M elements,
denoted xTFm

(f, n), which corresponds to the (f, n)th element
of the Short-Time Fourier Transform (STFT) [14], XTFm

, of
the sensor signal xm(t), sTF (f, n) denotes a column vector
with L elements, denoted sTFl

(f, n), which corresponds to the
(f, n)th element of the STFT, STFl

, of the source signal sl(t).
The matrix A(f) is an M × L mixing matrix for frequency bin
f . In order to separate the source signals from the observed
mixtures, an unmixing matrix W(f) should be estimated for
each frequency bin:

yTF (f, n) = W(f)xTF (f, n) (4)

In the sequel, we assume that M = L and that the A(f) matri-
ces are well conditioned.

III. PROPOSED APPROACH

The proposed solution starts by applying the Independent Vector
Analysis (IVA) [3] that solves implicitly the permutation ambi-
guity at the frequency bins, then addresses the scaling ambiguity
through Back Projection and finally, recovers the source signal
through a SIMO deconvolution algorithm. In subsection B.,
we discuss the relationship between Minimal Distortion Princi-
ple (MDP) and Back Projection, and show that the MDP is a
particular solution of the Back Projection.

A. Independent Vector Analysis (IVA)

The IVA algorithm [3] considers the sources as multidimensional
random vectors containing all the frequency components of each
source signal. It aims to maximize the independence between
individual source signals while maintaining the dependency
within each vector. This process get rid of the permutation
ambiguity between the frequency bins. The unmixing matrix
is estimated at each frequency bin according to the following
iterative update [11]:

W(f)←W(f) + η∆W(f) (5)

With

∆W(f) =
{

I + E
[
ϕf (yTF )yTF (f)H

]}
W(f)

yTF = [yTF1
, ..., yTFL

]T

ϕf (yTF ) =
[
ϕf
1 (yTF1

), ..., ϕf
L(yTFL

)
]T

ϕf
l (yTFl

) =
∂

∂yTFl
(f)

log
(
p(yTFl

)
)

where the step size, η ∈ [0, 1], is a tuning parameter that imposes
a trade-off between convergence speed and stability [11], and
p(.) is a density probability function.

This can be obtained by dimension reduction at each frequency
bin, e.g. by data whitening.

B. Minimal Distortion Principle versus Back Projection

To deal with the scaling ambiguity in the frequency domain,
two major techniques exist in the literature, mainly the Minimal
Distortion Principle (MDP) [9] and the Back Projection (BP)
[16]. The MDP chooses the proper separators that minimize the
mean square difference between the separated sources and the
sensor signals, its solution consists of the following unmixing
matrix at frequency bin f :

Ws(f) = diag(W−1(f))W(f) (6)

where diag(.) denotes the diagonal matrix operator and W(f)
is the unmixing matrix, at frequency bin f , estimated by the IVA
algorithm.

The Back Projection technique projects back the estimated
source signals to the sensor array, it actually rescales the source
signals to match their observed amplitudes at each sensor:

Let Â(f) = W−1(f) be the estimated mixing matrix, the in-
verse of the estimated unmixing matrix, at the f th frequency
bin, and yTFl

(f, n), be the estimate of the lth source signal
sTFl

(f, n) at the time-frequency point (f, n). Because of the
inherent scaling indeterminacy, we have the following relation-
ships:

yTFl
(f, n) = αl(f)sTFl

(f, n) (7)

âl(f) =
1

αl(f)
al(f) (8)

where αl(f) is an arbitrary factor. To get the signals, denoted
sTFl

(f, n), free from the scaling indeterminacy, one can mul-
tiply the lth separated signal yTFl

(f, n) by its corresponding
column of the estimated mixing matrix âl(f):

sTFl
(f, n) = âl(f)yTFl

(f, n) (9)

By substituting equations (7) and (8) in equation (9), one gets:

sTFl
(f, n) = al(f)sTFl

(f, n), l = 1, · · · , L (10)

where sTFl
(f, n) = [sTFl1

(f, n), ..., sTFlM
(f, n)]T with

sTFlk
(f, n) being the contribution of the lth estimated source

signal at the kth sensor. It appears clearly from equation (10)
that the recovered source signals at their sensor-observed am-
plitudes are free from the scaling ambiguity αl(f). Note that
equation (10) describes a Single Input Multiple Output (SIMO)
system for each source, separately. Thanks to the multidimen-
sionality of its output, such a system provides the spatial diver-
sity needed to recover its input (in our case the corresponding
source) using only second order statistics.

Let W(f) be an estimate of the unmixing matrix, at frequency
bin f , of the blind convolutive separation problem. The scale
indeterminacy free unmixing matrix of the Minimum Distortion
Principle,

Ws(f) = diag(W−1(f))W(f)

is a particular solution of the Back Projection.

Using equation (9), the expression of the lth signal recovered
by Back Projection at the lth sensor is given by:

sTFll
(f, n) = âll(f)yTFl

(f, n), l = 1, · · · , L. (11)
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Consider the following source vector:

sTF (f, n) = [sTF11
(f, n), sTF22

(f, n), ..., sTFLL
(f, n)]T

(12)

Using equation (11), the source vector sTF (f, n) reads:

sTF (f, n) =


â11(f) 0 . . . 0

0 â22(f) . . . 0
...

...
. . .

...
0 0 . . . âLL(f)

 yTF (f, n)

(13)
Note that

â11(f) 0 . . . 0
0 â22(f) . . . 0
...

...
. . .

...
0 0 . . . âLL(f)

 = diag(Â(f)) (14)

where Â(f) is an estimate of the mixing matrix at frequency bin
f , that is the inverse of the estimated unmixing matrix W(f):

Â(f) = W−1(f) (15)

According to equations (4), (14) and (15), equation (13) is
rewritten as:

sTF (f, n) = diag(W−1(f))W(f)xTF (f, n)

= Ws(f)xTF (f, n) (16)

with Ws(f) = diag(W−1(f))(W)(f), where one recognizes
the MDP unmixing matrix (6).

This Theorem shows that the Minimum Distortion Principle is
a particular solution of the Back Projection, in which only the
l − lth components, sTFll

(f, n), l = 1, · · · , L are used.

C. Back projection-Spatial diversity

In reference [17], the authors estimate the source signals as the
back projected components onto the first sensor, i.e.

sTFl1
(f, n), l = 1, · · · , L (17)

The above expression does not exploit the spatial diversity of-
fred by the source vectors sTFl

(f, n), l = 1, · · · , L. Our con-
tribution consists of exploiting this spatial diversity through
Single Input Multiple Output (SIMO) deconvolution of the back
projected output signal obtained after separation in the time-
frequency domain by the IVA algorithm.

The source vectors of equation (9) obtained after the back projec-
tion of the IVA algorithm outputs in the time-frequency domain
are transformed to the time domain through the Inverse Short
Time Fourier Transform (ISTFT):

slk(n) = ISTFT (sTFlk
(f, n)), k, l = 1, · · · , L (18)

According to equation (10), one has:

slk(n) = ISTFT (alk(f)sTFl
(f, n)), (19)

Since we have assumed a significantly longer analyzing window
than the impulse response, the multiplications in the frequency

domain are translated to linear convolutions in the time domain.
Hence, we obtain L SIMO systems:

slk(n) =

P−1∑
p=0

al,k(p)sl(n− p), k, l = 1, · · · , L (20)

The Robust Normalized Multichannel Frequency-Domain Least-
Mean-Square algorithm [15] and the SIMO equalizer reported
in [8] are employed in this paper for performing the blind identifi-
cation of theL SIMO channels al,k(p), p = 0, · · · , P−1; k, l =
1, · · · , L, and their equalization to retrieve theL original sources
sl(n), l = 1, · · · , L, respectively.

IV. NUMERICAL EXPERIMENTS

Herein, an evaluation is conducted in the case of speech signals.

A. Experimental setup

Pyroomacoustics software package [19] is used to generate
the Room Impulse Responses (RIRs) and the corresponding
convolutive mixtures according to a simulation scenario: A
room measuring 5.5 m× 3.5 m× 3 m with RT60 reverberation
time of 130 ms was chosen, and an array of seven microphones
was placed in the center of the room, with one microphone
in the center and the other six spaced equally around a circle
of a 4.5 cm radius. Two sources were positioned at different
angles 0.5 m away from the microphone array, and mixtures
were produced using 10 s speaking utterances at a sampling
frequency of 16 kHz. Figure 1 shows the simulation scenario
and the position of the two sources.

Fig. 1: Simulation scenario with 2 sources.

B. Performance evaluation

To assess the quality of the separation, we compute the stan-
dard energy ratios in decibels (dB), specifically the Signal-to-
Distortion (SDR) for the lth source as:

SDRl = 10 log10

||sl||2

||sl − ŝl||2
(21)

where ||.|| denotes the Euclidean norm.

RT60 reverberation time is the duration required for the sound
energy in a room to decrease by 60 dB after the source emission has
stopped (ISO 3382).



ENP Engineering Science Journal, Vol. 5, No. 2, December, 2025 27

Herein, one evaluates the robustness of the proposed IVA-based
algorithm versus RT60 reverberation time using MDP [9], BP
[17] and our proposal BP-SIMO, respectively. The SDRs of
the two sources are computed for different RT60s ranging from
150 ms to 450 ms. Figures 2 and 3 depict the evolution of
the BSS performance (SDR) of the first and second separated
signal, respectively, as the RT60 increases.

Fig. 2: Effect of reverberation on the SDR of the first separated
signal.

Fig. 3: Effect of reverberation on the SDR of the second sepa-
rated signal.

The above graphs show that an increase in RT60 reverberate time
leads to a gradual degradation of performance. This degradation
occurs because sound waves in a reverberate room bounce off
surfaces and create multiple reflections that can overlap with the
direct sound, making it difficult for BSS algorithms to accurately
distinguish between individual sources. The results highlight,
as well, that our BP-SIMO approach outperforms the BP [17]
and MDP [9] methods for all RT60 values.

V. CONCLUSION

New insights on the scaling ambiguity problem involved in Inde-
pendent Vector Analysis is given. The relationship between the
Minimal Distortion Principle and Back Projection for solving

the aforementioned ambiguity is discussed. The paper shows
that the Minimal Distortion Principle is actually a particular so-
lution of the Back Projection. A second contribution consisted
of exploiting, through SIMO deconvolution, the spatial diversity
provided by the Back Projection. Herein, the SIMO deconvo-
lution has been performed using the Robust Normalized Multi-
channel Frequency-Domain Least-Mean-Square algorithm [15]
for the channel blind identification and the SIMO equalizer re-
ported in [8] for the channel equalization. Performance results,
in terms of signal to distortion ratio, confirm that the proposed
approach enhances the quality of source separation, with respect
to reverberate time, as applied to speech signals.
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