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Food Freshness Evaluation Using a CLIP-Based
Architecture

Md. Siam Ansary, Amina Brinto, and Shaila Sajnin Keya

Abstract—In this work, we present an efficient deep learning framework for automated fresh and stale food classification
using transfer learning with a pretrained CLIP-based feature extractor. The proposed system employs frozen vision
transformer (ViT) embeddings from CLIP as generalized visual descriptors and integrates them with a lightweight multi-
layer perceptron (MLP) classifier for binary classification. To enhance generalization, extensive data augmentation and
stratified dataset partitioning were applied to the publicly available Fresh and Stale Classification dataset. Experimental
results reveal a consistent improvement across ten training epochs, achieving a final test accuracy of 97.99%, F1-score
of 0.9808, and ROC–AUC of 0.9985. The proposed model demonstrates excellent discriminative performance, robust
convergence, and strong generalization capabilities while maintaining computational efficiency. These results confirm
the suitability of CLIP-based visual representations for high-accuracy food quality assessment and real-time freshness
detection applications.
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NOMENCLATURE

CLIP Contrastive Language-Image Pre-training.
MLP Multilayer perceptron.
ViT Vision Transformers.
CNN Convolutional Neural Network.
ACC Accuracy.
P Precision.
R Recall.
F1 F1-score.
SP Specificity.
ROC Receiver Operating Characteristic.
AUC Area under the curve.
MCC Matthews Correlation Coefficient.
CUDA Compute Unified Device Architecture.
GPU Graphics Processing Unit.

I. INTRODUCTION

Food quality assessment plays a critical role in ensuring con-
sumer safety, reducing waste, and maintaining supply-chain
efficiency. Traditional approaches for freshness detection rely
heavily on manual inspection or sensor-based measurements,
which are time-consuming, labor-intensive, and prone to hu-
man error. Recent advancements in deep learning and com-
puter vision have enabled automated food-quality recognition
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by leveraging large-scale image datasets and pretrained models.
However, many existing solutions depend on fine-tuning deep
convolutional networks, which require significant computational
resources and domain-specific data.

To address these limitations, this study proposes a transfer-
learning–based classification framework that integrates pre-
trained CLIP (Contrastive Language–Image Pretraining) em-
beddings with a lightweight Multi-Layer Perceptron (MLP)
classifier. CLIP’s vision transformer (ViT-B/16) backbone was
employed as a fixed feature extractor to capture rich semantic
and textural representations from images of food items. The
extracted features were subsequently classified using a compact,
fully connected MLP network. This approach reduces training
cost while maintaining high discriminative performance.

The proposed model was evaluated on the publicly available
Fresh and Stale Classification dataset from Kaggle. The data
were divided into training, validation, and test subsets using strat-
ified sampling to maintain class balance. The system achieved
outstanding accuracy and F1-score, demonstrating the effective-
ness of pretrained transformer features for specialized classi-
fication tasks. The major contributions of this research are as
follows:

1. Development of a CLIP-based feature extraction frame-
work for food freshness classification without end-to-end
fine-tuning.

2. Implementation of a lightweight MLP classifier optimized
for fast convergence and minimal computational overhead.

3. Comprehensive evaluation using multiple performance
metrics including accuracy, precision, recall, F1-score,
ROC–AUC, and Matthews correlation coefficient.

4. Empirical validation showing that frozen CLIP embed-
dings can achieve near state-of-the-art results on a small-
scale, domain-specific dataset.
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The experimental findings highlight that transfer learning using
CLIP-derived representations provides a powerful and efficient
pathway for food-quality classification, opening avenues for
deployment in industrial inspection systems, automated retail
environments, and mobile consumer applications.

II. LITERATURE REVIEW

Yuan et al. [1] worked on vegetable and fruit freshness detection
using deep visual features. They extracted CNN-based represen-
tations from RGB images and trained a classifier that achieved
high recognition accuracy for freshness identification across
multiple produce categories.

Gao et al. [2] developed a food image classification model
utilizing a Vision Transformer (ViT) with extensive data and fea-
ture augmentation. Their framework significantly outperformed
conventional CNN architectures, showing higher precision on
benchmark food datasets.

Jo et al. [3] conducted research on fresh meat quality assess-
ment through hyperspectral imaging (HSI). By integrating spa-
tial–spectral CNNs, they predicted physicochemical properties
related to meat freshness and demonstrated substantial gains
over RGB-only models.

Choi et al. [4] proposed a hybrid model combining hyperspectral
imaging and chemometric analysis for predicting pork freshness.
The model accurately estimated total volatile basic nitrogen
(TVB-N) values and sensory freshness scores, confirming the
potential of HSI for non-destructive freshness assessment.

Lun et al. [5] presented a comprehensive review of deep learn-
ing–enhanced spectroscopic technologies for food quality anal-
ysis. Their study emphasized the synergy between deep neural
networks and spectral sensing methods in evaluating ripeness,
adulteration, and spoilage.

Sonwani et al. [6] worked on an integrated food spoilage moni-
toring system employing multiple sensors and machine learning
algorithms. The framework successfully detected early spoilage
signs under real-world conditions by analyzing volatile gas emis-
sions and environmental parameters.

Shu et al. [7] investigated fruit freshness classification using a
ResNet-101 backbone enhanced with non-local attention mech-
anisms. Their model achieved superior recall and F1-score on
fruit datasets with varying freshness levels, proving the effec-
tiveness of attention-based CNNs.

Nikzadfar et al. [8] reviewed hyperspectral imaging and artifi-
cial intelligence integration for food quality and safety. They
analyzed recent methods that combine spatial–spectral data with
deep learning architectures for rapid and non-invasive freshness
detection.

Gatti et al. [9] applied CLIP-based transfer learning for visual
verification in food packaging. They extracted frozen CLIP
embeddings and trained lightweight classifiers to detect mis-
matches in food order packaging, achieving high accuracy in
industrial inspection environments.

Mehdizadeh et al. [10] explored AI-driven, non-destructive de-
tection of meat freshness using spectral sensors. Their model

correlated deep-learning predictions with chemical indicators of
spoilage, reaching ROC–AUC scores above 0.95.

Varga et al. [11] investigated fruit ripeness estimation using hy-
perspectral imaging combined with deep learning. They applied
convolutional neural networks to predict ripeness stages with
strong generalization across different fruit types.

Anwar et al. [12] conducted a review on food quality assessment
using machine learning and sensors. Their study concluded that
sensor fusion, combining electronic nose, imaging, and spectral
data, enhances reliability in freshness classification.

Radford et al. [13] introduced CLIP (Contrastive Lan-
guage–Image Pretraining), which enabled large-scale vi-
sual–language representation learning. Their model set a foun-
dation for zero-shot transfer learning, later utilized for various
food classification tasks.

Dosovitskiy et al. [14] developed the Vision Transformer (ViT)
architecture that processes image patches through self-attention
mechanisms. ViT demonstrated superior performance on image
classification benchmarks and influenced modern food-vision
approaches.

Bossard et al. [15] proposed the Food-101 dataset and baseline
CNN models for food category classification. This dataset has
since been widely used for evaluating and fine-tuning deep food
recognition systems.

Ghosh et al. [16] presented NoisyViT, a robust vision trans-
former framework for food image recognition under noisy envi-
ronments. Their approach enhanced classification stability and
improved performance on low-quality food imagery.

Liu et al. [17] conducted a comprehensive review on deep learn-
ing in food image recognition. They discussed CNNs, transform-
ers, and multimodal architectures, highlighting recent advances
and challenges in large-scale food datasets.

III. IMPLEMENTATION METHODOLOGY

The implementation pipeline was designed to systematically
train, validate, and evaluate a deep learning model for binary
image classification between fresh and stale food samples. The
overall workflow comprises six major stages: dataset prepara-
tion, preprocessing and augmentation, model architecture de-
sign, feature extraction, classifier training, and evaluation. Each
component was implemented in Python using PyTorch and the
timm vision library, executed in Google Colab with GPU accel-
eration.

A. Dataset Preparation

The “Fresh and Stale Classification” dataset from Kaggle
was used for experimentation. The dataset consists of im-
ages categorized into two classes: fresh and stale. Images
were organized into a directory structure compatible with
torchvision.datasets.ImageFolder, enabling automatic
label assignment based on folder names. The dataset was split
into 80% training, 10% validation, and 10% testing subsets us-
ing Stratified Shuffle Split to preserve class distribution across
all splits.
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B. Data Preprocessing and Augmentation

To ensure robust feature learning and to prevent overfitting,
distinct preprocessing pipelines were defined for training and
validation phases using the torchvision.transforms mod-
ule. Training transformations included random resized cropping,
horizontal flipping, and color jittering to introduce variabil-
ity in scale, orientation, and illumination. Validation and test
transformations involved only resizing and center cropping for
consistency. All images were normalized using the standard
ImageNet mean and standard deviation values to align with the
normalization of pretrained networks.

C. Feature Extraction Using Pretrained Backbone

To leverage transfer learning, a pretrained feature extractor was
employed rather than training an entire convolutional network
from scratch. The Vision Transformer (ViT-B/16) variant of
CLIP (vit_base_patch16_clip_224.openai) was loaded
using the timm library. The model’s classification head was
removed by setting num_classes=0, allowing it to output high-
dimensional feature embeddings through global average pooling.
These embeddings capture semantic information from the input
images without fine-tuning the pretrained parameters, ensuring
computational efficiency and reducing overfitting risk.

D. Classifier Architecture

On top of the extracted visual embeddings, a lightweight Multi-
Layer Perceptron (MLP) classifier was implemented to perform
the final binary classification. The MLP architecture consisted
of:

• A fully connected layer projecting concatenated feature
vectors to a hidden dimension of 512

• Batch Normalization and ReLU activation to stabilize and
accelerate convergence

• Dropout (0.5) for regularization

• A final linear layer mapping to two output neurons repre-
senting the two classes (fresh and stale)

The classifier was optimized independently, while the feature
extractor remained frozen during training.

E. Model Training

The classifier was trained using the Adam optimizer with a
learning rate of 0.001 and Cross-Entropy Loss as the objec-
tive function. The training process spanned 10 epochs with a
batch size of 32. During each iteration, images were forwarded
through the frozen feature extractor to generate embeddings,
which were then input to the MLP for classification. The opti-
mizer updated only the classifier parameters based on computed
gradients.

To ensure reproducibility, all random seeds were fixed across
Python, NumPy, and PyTorch modules. The device configura-
tion automatically selected GPU (cuda) if available; otherwise,
computation defaulted to CPU.

F. Model Evaluation

Performance was assessed on the held-out test set using several
evaluation metrics:

• ACC: overall prediction correctness

• P and R: to quantify class-wise reliability and complete-
ness

• F1: harmonic mean of precision and recall

• SP: ability to correctly identify fresh samples

• ROC–AUC: area under the Receiver Operating Character-
istic curve

• MCC: balanced performance metric even for class-
imbalanced data

G. Implementation Environment

All experiments were conducted on Google Colab with an
NVIDIA GPU runtime. The implementation utilized the fol-
lowing key Python packages: torch, torchvision, timm,
scikit-learn, numpy, and PIL. The entire workflow was ex-
ecuted under Python 3.10. The source code was designed for
reproducibility, portability, and clarity to facilitate further exten-
sions or integration with other pretrained architectures.

IV. EVALUATED RESULTS

The proposed model was evaluated on the “Fresh and Stale
Classification” dataset using an 80–10–10 split for training,
validation, and testing, respectively. Table I summarizes the
epoch-wise performance across ten training epochs, reporting
loss, accuracy, and F1-score for both training and validation
phases.

As shown in Table I, the training and validation losses consis-
tently decreased across epochs, demonstrating stable conver-
gence and effective learning. Validation accuracy improved
from 95.33% in the first epoch to a peak of 98.52% at epoch
9, while the corresponding F1-score reached 0.9859, indicating
strong generalization capability. The marginal difference be-
tween training and validation metrics suggests that overfitting
was well controlled due to appropriate regularization and data
augmentation.

After completing ten epochs of training, the best-performing
model was tested on the held-out test set. The comprehensive
evaluation results are presented in Table II.

The high ROC–AUC score (0.9985) and F1-score (0.9808) indi-
cate that the model is capable of distinguishing between fresh
and stale samples with remarkable precision.

Moreover, the Matthews correlation coefficient (0.9601) reflects
strong agreement between the predicted and actual classes, even
under potential class imbalance.
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Table. I
EPOCH-WISE PERFORMANCE OF THE PROPOSED MODEL

Epoch Train Loss Val Loss Train Acc Val Acc Train F1 Val F1
1 0.2455 0.1124 0.8954 0.9533 0.9009 0.9542
2 0.1993 0.0718 0.9175 0.9738 0.9219 0.9749
3 0.1841 0.0606 0.9232 0.9795 0.9273 0.9805
4 0.1714 0.0651 0.9313 0.9742 0.9351 0.9759
5 0.1651 0.0590 0.9344 0.9764 0.9380 0.9774
6 0.1560 0.0499 0.9353 0.9852 0.9387 0.9860
7 0.1566 0.0590 0.9370 0.9772 0.9404 0.9782
8 0.1510 0.0514 0.9393 0.9810 0.9425 0.9819
9 0.1419 0.0438 0.9435 0.9852 0.9466 0.9859

10 0.1423 0.0469 0.9432 0.9821 0.9463 0.9830

Table. II
FINAL TEST METRICS OF THE PROPOSED MODEL

Metric Value
Accuracy 0.9799
Precision 0.9948
Recall (Sensitivity) 0.9671
Specificity 0.9943
F1-score 0.9808
ROC–AUC Score 0.9985
Matthews Correlation Coefficient 0.9601

curve.png

Fig. 1: Receiver Operating Characteristic (ROC) curve on the
test set.

V. RESULT ANALYSIS

The experimental findings demonstrate that the proposed CLIP-
based feature extraction combined with a lightweight multi-layer
perceptron classifier achieved highly promising results on the
Fresh and Stale Classification dataset. Throughout ten train-
ing epochs, both the training and validation metrics exhibited a
consistent upward trend, confirming the model’s stability and
strong convergence behavior. The validation accuracy improved
steadily from 95.33% in the first epoch to 98.52% by the ninth
epoch, while the corresponding validation F1-score reached
0.9859, signifying excellent class-wise balance between preci-
sion and recall. The simultaneous decline in training and vali-
dation losses indicates that the model successfully minimized
overfitting while learning meaningful representations from the
data.

The final test evaluation further reinforces the model’s robust-
ness. With an overall accuracy of 97.99%, precision of 99.48%,
and recall of 96.71%, the classifier proved highly reliable in
identifying both fresh and stale samples. The ROC–AUC score
of 0.9985 demonstrates outstanding discriminative capability,
nearly reaching perfect separation between the two categories.
Additionally, the Matthews correlation coefficient (0.9601) con-
firms a very strong correlation between predicted and actual
labels, even in the presence of potential class imbalance.

A closer examination of the confusion matrix reveals that
out of 2,634 test samples, only 53 misclassifications oc-
curred—comprising 7 false positives and 46 false nega-
tives—which corresponds to an error rate below 2%. This
highlights the model’s exceptional generalization ability and
reliability in practical applications.

The observed results clearly validate the effectiveness of lever-
aging pretrained visual transformers (CLIP) as frozen feature
extractors for domain-specific image classification tasks. By
utilizing generalized visual embeddings learned from large-
scale datasets, the model successfully transferred high-level
semantic knowledge to a specialized food-quality classification
problem. Furthermore, the lightweight MLP classifier ensured
computational efficiency without sacrificing performance, mak-
ing the proposed pipeline well-suited for real-time or resource-
constrained environments.

In summary, the performance metrics collectively demonstrate
that the proposed approach achieved state-of-the-art accuracy
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and robustness, confirming its potential as an efficient and scal-
able solution for automated freshness assessment. The strong
balance across precision, recall, and F1-score also reflects the
model’s ability to make reliable decisions across both classes,
ensuring practical viability for industrial and consumer applica-
tions.

VI. FUTURE WORKS

Although the proposed system achieved remarkable accuracy
and robustness, several directions remain for future research.
First, further improvements could be attained through multi-
modal integration, combining visual embeddings with chemical
or spectral sensor data to enhance freshness prediction accuracy.
Additionally, incorporating temporal analysis using video-based
or time-series models may help capture gradual degradation
patterns in perishable items.

Exploring fine-tuning strategies on domain-specific subsets of
CLIP or other large vision–language models could improve
adaptability to diverse food types. Moreover, implementing
model quantization and pruning would facilitate deployment
on low-power edge devices such as smartphones or embedded
inspection systems. Finally, the system can be extended to multi-
class scenarios to provide more granular insights for food safety
monitoring and shelf-life prediction.

VII. CONCLUSION

This study introduced a novel and efficient approach for fresh
and stale image classification using transfer learning with pre-
trained CLIP visual embeddings and a simple yet effective MLP
classifier. The experimental results demonstrated consistent
performance improvements throughout training, achieving a fi-
nal accuracy of 97.99%, F1-score of 0.9808, and ROC–AUC
of 0.9985 on the test dataset. The results confirm that pre-
trained transformer-based visual representations can generalize
remarkably well to food-quality inspection tasks with minimal
fine-tuning requirements.

The proposed model’s high precision, recall, and robustness
make it a viable candidate for practical real-world deployment
in automated inspection, packaging, and food-safety assurance
systems. In conclusion, this work underscores the potential of
CLIP-based transfer learning to bridge the gap between large-
scale vision-language models and domain-specific classification
problems, providing a foundation for future innovations in intel-
ligent food-quality monitoring.
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