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Fractional-order PD control of a parallel Delta robot: 

Experimental results  

Someya Amrane, Chems Eddine Boudjedir and Djamel Boukhetala 

Abstract− In this paper, a fractional-order proportional–derivative (PD) controller is proposed as a means to enhance 

the trajectory tracking performance of a parallel Delta robot. The highly coupled and nonlinear dynamics of the Delta 

robot pose significant challenges for conventional integer-order PD controllers, often resulting in limited tracking 

accuracy. To address these limitations, the integer-order derivative term is replaced by a fractional-order derivative, 

thereby providing additional tuning flexibility and improved dynamic behavior. In experimental studies, a comparison 

is conducted between the fractional-order and integer-order PD approaches, as well as an evaluation of the influence that 

different fractional derivative orders have on robot tracking performance.  
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I. INTRODUCTION 

    Many theoretical contributions to fractional calculus have 

been proposed by Euler, Liouville, Riemann, and Grünwald [1]. 

These definitions have been successfully applied in multiple 

domains, such as electromagnetism and electrochemistry. For a 

historical introduction to fractional calculus, the reader can 

refer to [2]. 

    The application of fractional calculus has experienced 

significant growth over the last decades, due to its robustness 

and improved tracking performance. Fractional calculus has 

been applied in many engineering fields, such as robotics [3], 

autonomous underwater vehicles [4], and wind turbine 

generators [5].  

    Parallel kinematic robots offer several advantages over serial 

robots, such as high rigidity, accuracy, and load capacity. 

Professor Raymond Clavel invented the parallel Delta robot as 

an efficient solution for repetitive pick-and-place operations. 

The original prototype features three translational degrees of 

freedom and one rotational degree of freedom [6]. The reader 

may refer to the survey [7] for further designs of the Delta 

robot. 

    The robot manipulator is commonly controlled using 

conventional PID controllers [8]. However, this control law is    

often inadequate for applications requiring high precision under 

fast dynamic motions, due to the fact that the PD control 

parameters are chosen without fully considering the coupling 

effects. To overcome this issue and improve trajectory tracking 

performance, many works have been proposed, such as 

nonlinear PD control [9], iterative learning control [10-12], 

time delay control [13], and sliding mode control [14]. 

 

  

   In recent years, both fractional calculus and model-free 

control strategies have attracted considerable attention. Several 

control frameworks have incorporated fractional-order 

operators into the control loop, for instance, fractional adaptive 

control [15] and robust control design CRONE [16].  

    Fractional-order PID controllers have demonstrated superior 

robustness and performance compared to conventional PID 

controllers. Podlubny's proposal introduced a generalized 

fractional-order PID controller of the form 𝑃𝐼 λ 𝐷𝜇 , where λ and 

µ are non-integer orders. By appropriately tuning these 

parameters, the tracking accuracy can be significantly 

improved [1].  

    Fractional-order PID controllers have been further 

investigated in [17], where the robustness and performance 

were enhanced. In [18], the fractional-order PID controller was 

applied to a planar parallel robot to improve trajectory tracking 

accuracy. In [19], a fractional-order PID was designed to 

control a parallel robot, resulting in reduced tracking error and 

eliminated overshoot. 

    The main contribution of this paper is the design and 

experimental implementation of a fractional-order PD 

controller for trajectory tracking of a parallel Delta robot. 

Experimental studies are conducted to evaluate the 

effectiveness of the proposed approach. A comparative analysis 

between the fractional-order PD controller and the 

conventional integer-order PD controller is also conducted.  

    The remaining sections of this paper are organized as 

follows: section II introduces the dynamic model of the Delta 

robot. Section III presents the controller design. While in 

section IV, experimental results are presented. Finally, section 

V provides some conclusions.  

II. DYNAMIC MODEL 

    The Delta robot shown in   Fig. 1 is equipped with three 
kinematic chains, each consisting of a servo motor and a 
reducer connected to the upper arm. The forearm of the Delta 
robot is linked to both the upper arm and the travelling plate.  
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Fig. 1: Delta Robot 

    The robot dynamics is described as in [11]:  

 

                       𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏                  (1) 

Where: 

𝑀(𝑞) = 𝐼𝑏 + 𝑚𝑛𝑡𝐽𝑇𝐽 

𝐶(𝑞, 𝑞̇) = 𝐽𝑇𝑚𝑛𝑡𝐽 ̇

𝐺(𝑞) = −𝜏𝐺𝑛
− 𝜏𝐺𝑏

 

 

    The generalized joint vector is denoted as 𝑞 = [𝑞1, 𝑞2, 𝑞3]𝑇, 

the inertia matrix is represented by M(q) ∈ 𝑅3×3, the vector 

resulting from centrifugal and Coriolis forces is denoted as  

𝐶(𝑞, 𝑞̇)𝑞̇ ∈ 𝑅3×3. 𝐺(𝑞) ∈ 𝑅3×1 refers to the gravitational vector. 

𝜏, 𝜏𝐺𝑏
 and 𝜏𝐺𝑛

represent, respectively, the joint torque, the torque 

produced by the gravitational force of the arms and the torque 

produced by the inertial force. The Jacobian matrix is denoted 

as 𝐽, and its derivative respect to time is given as 𝐽.̇  

𝑚𝑛𝑡 signifies the total mass, which includes the mass of the 

travelling plate, the playload mass and the combined masses of 

the three forearms.  

 

The expression of the torques is given as follows:  

                           𝜏𝐺𝑛
= 𝐽𝑇𝑚𝑛𝑡[0   0 − 𝑔]𝑇                         (3) 

                𝜏𝐺𝑏
= 𝑚𝑏𝑟𝐺𝑏

𝑔[cos 𝑞1  cos 𝑞2   cos 𝑞3]𝑇           (4) 

 

The detailed expressions of 𝐽, 𝐽,̇  𝑚𝑛𝑡 and 𝑟𝐺𝑏
are given in [11]. 

Table I describes the parameters of the robot. 

 

III. CONTROLLER DESIGN 

  The PD controller is proposed in joint space as follows: 

                      𝜏 = 𝑘𝑝0𝑞̃(𝑡) + 𝑘𝑑0𝑞̇̃(𝑡)                           (5) 

In which, 𝑘𝑝0 and 𝑘𝑑0 are constant diagonal matrices. 𝑞(𝑡) and 

𝑞̇(𝑡) are given as follows: 

𝑞̃(𝑡) = 𝑞𝑑(𝑡) − 𝑞𝑘(𝑡) 

𝑞̇̃(𝑡) = 𝑞𝑑̇(𝑡) − 𝑞𝑘̇(𝑡) 

    Where 𝑞𝑑(𝑡) and 𝑞𝑑̇(𝑡) represent the desired joint position 
and the desired joint velocity, respectively. The actual joint 
position and the actual joint velocity are denoted as 𝑞𝑘(𝑡) and 
𝑞𝑘̇(𝑡) respectively.  

    Since conventional PID controllers may not achieve 
satisfactory performance for tasks requiring high precision, 
many studies have applied fractional-order PID controllers to 
improve accuracy and trajectory tracking. In this paper, a 
fractional-order PD controller is implemented on the Delta 
robot. The control law includes three parameters: the 

proportional gain 𝐾𝑝, the derivative gain 𝐾𝑑, and the derivative 

fractional-order 𝜇.  

    By introducing the fractional derivative order, the controller 

can achieve a satisfactory trade-off among the advantages and 

drawbacks of the conventional PD controller, such as enhanced 

stability provided by the derivative term, while mitigating its 

main disadvantage, i.e., high sensitivity to noise. 

 

The continuous differential operator is given by : 

  

                            ;𝑎 𝐷𝑡
𝜇

=
𝑑𝜇

𝑑𝑡𝜇       𝜇 > 0                 

      

Where, 𝜇 ∈ 𝑅 is the operation order. 

 

Grunwald-Letnikov definition is given by : 

;𝑎 𝐷𝑡
𝜇

𝑓(𝑡) =
;𝑎𝑑𝑡

𝜇
𝑓(𝑡)

𝑑𝑡𝜇 = lim
ℎ→0

{
1

ℎ𝜇
∑ (−1)𝑘 (

𝜇
𝑘

) 𝑓(𝑡 − 𝑘ℎ)
𝑡−𝑎

ℎ
𝑘=0 }         

    The fractional-order derivative of the function 𝑓 requires 

knowledge of 𝑓(𝑡) over the interval [a, t], in contrast to the 

integer order which only requires knowledge of 𝑓 near 𝑡. This 

feature leads to the conclusion that fractional-order systems are 

long-memory systems. 

 
    The fractional-order PD controller is expressed as: 

                      𝜏 = 𝑘𝑝𝑞̃(𝑡) + 𝑘𝑑𝐷𝜇𝑞̃(𝑡)                          (8) 

where the torque 𝜏 represents the control signal. 

 

    Fractional-order functions must approximated by integer-

order expressions to be easily handled during software 

implementation. The numerical approximation for fractional 

calculus used in this paper is the Grünwald–Letnikov method, 

based on the Taylor expansion [1] : 

;

(𝑘−
𝐿
ℎ

)
𝐷𝑡𝑘

𝜇
  𝑞̃(𝑡) ≈ ℎ−𝜇 ∑(−1)𝑗 (

𝜇
𝑗 )

𝑘

𝑗=0

𝑞̃(𝑡𝑘−𝑗) 

                                               = ℎ−𝜇 ∑ 𝑐𝑗
(𝜇)

𝑘

𝑗=0
𝑞̃(𝑡𝑘−𝑗)      (9)  

 

In which, 𝑡𝑘 = 𝑘ℎ , h is the sampling period, and L represents 

the memory length, 

 
  The binomial coefficients can be calculated as follows:  

                             𝑐𝑗
(𝜇)

= (1 −
1+𝜇

𝑗
) 𝑐𝑗−1

(𝜇)
                       (10) 

and  𝑐0
(𝜇)

= 1 

    The scheme of the fractional-order PD controller is shown in 
Fig. 2, where IGM illustrates the inverse geometric model and 
𝑥𝑑 denotes the desired trajectory in the operational space. 

Remark 1: The fractional-order PD controller can be widely 

used in industrial applications due to its ease of implementation. 

Remark 2: Unlike the control strategies which require an exact 

mathematical model, the fractional-order PD controller is 

model-free. 

Table. I 

GEOMETRIC AND DYNAMIC PARAMETERS 

Parameters DESCRIPTION Value 

𝐋𝐚 

 

Upper arm length 0.380 m 

𝐋𝐛 Forearm length 0.205 m 

 

𝒎𝐧 

 

𝐦𝐛𝐫 

 

𝐦𝐚𝐛 

 

𝐦𝐜 

 

Traveling plate mass 

 
Upper arm mass 

 

Forearms masses 
 

Elbow mass 

 

0.42 kg 

 
0.098 Kg 

 

0.028 Kg 
 

0.016 Kg 
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Remark 3: The parameters of the fractional-order PD 

controller allow achieving a better trade-off between the 

positive and negative effects of the derivative action. 

 

Fig. 2: Scheme of the proposed controller. 

 

IV. EXPERIMENTAL RESULTS 

    The experimental results obtained by applying the fractional-

order PD control law (8) on the Delta robot of Fig. 1 are 

presented in this section. 

    The robot utilizes brushed DC motors with a belt-driven 

transmission having a ratio of r=12. The operational trajectory 

is executed with a maximum acceleration of 15 m/s2 [23, 24]. 

The data were collected by sampling at 1 kHz, and the control 

algorithms were implemented in C language.  

    The tracking performance evaluation involves the utilization 

of the Maximum Absolute Error (MAE) and Root Mean Square 

Error (RMSE) as criteria. The expressions of these criteria are 

as follows: 

                 𝑅𝑀𝑆𝐸𝑥  = √
1

𝑛
∑ (x𝑖 − x𝑑𝑖

)2
𝑛

𝑖=1
                        (11) 

 

               𝑀𝐴𝐸𝑥 = max (|𝑥𝑖 − 𝑥𝑑𝑖
|)                     (12)                                                                                  

     Where n represents the number of samples, 𝑥𝑑 represents the 

desired trajectory in the operational space and 𝑥𝑖 is the actual 

response in operational space. 

The expression of the RMSE and MAE when considering all 

the three axes is given by: 

 

           𝑅𝑀𝑆𝐸 = √𝑅𝑀𝑆𝐸𝑥
2 + 𝑅𝑀𝑆𝐸𝑦

2 +  𝑅𝑀𝑆𝐸𝑧
2               (13) 

𝑀𝐴𝐸 = max (𝑀𝐴𝐸𝑥 , 𝑀𝐴𝐸𝑦 , 𝑀𝐴𝐸𝑧)                     (14)        

   

The controller gains and fractional-order are selected as 𝑘𝑝 =

𝑑𝑖𝑎𝑔{2.2, 2.2, 2.2},  𝑘𝑑 = 𝑑𝑖𝑎𝑔{0.0145, 0.0145, 0.0145} and 

𝜇 = 1.12. These parameters are obtained using an iterative 

tuning procedure, in which tracking performance is evaluated 

by varying one parameter at a time while holding the others 

constant. The parameter 𝑘𝑝 is maintained at a moderate level to 

highlight the impact of the order 𝜇.  Increasing 𝑘𝑝 results in a 

faster response; however, it may also amplify overshoot, 

particularly when combined with a high 𝜇. 

 
 

 

 

 

 

          

 

 

Fig. 3: The operational trajectory tracking under the fractional-order PD 
controller 

 

           Fig. 4: Experimental tracking error of joint 1. 

 

           Fig. 5: Experimental tracking error of joint 2. 

 
             Fig. 6: Experimental tracking error of joint 3. 

 

             Fig. 7: Control torque of joint 1. 

 

    Fig 3 illustrates the trajectory tracking in the operational 

space under the proposed fractional-order PD controller. 

Figures 4, 5, and 6 depict the tracking error under the proposed 

fractional-order PD and PD controller of joints 1, 2, and 3, 

respectively. The figures point out that the tracking error under 

the fractional-order PD is inferior compared to the error under 

the PD controller. The proposed   controller exhibits an RMS 

error equal to 0.17 mm, which is less than 80.4% of that 

provided by the PD controller. For MAE, the fractional PD 

controller can ensure 0.49 mm, which is less than 80.8% of that 

ensured by the PD controller.  
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    Figures 7, 8, and 9 show the control torque signals under the 

PD and fractional-order PD controller for joints 1, 2, and 3, 

respectively. It is observed that the torque signals have nearly 

the same amplitude and variation. Table II presents the tracking 

performance of both controllers. 

Figs. 10 to 15 represent the tracking errors and control torque 

signals under the fractional-order PD controller for different 

derivative fractional-orders of joints 1, 2, and 3, respectively. It 

can be observed that when μ=0.91, the tracking error is much 

larger compared to  the cases when μ=1.11 or μ=1.21.  The 

RMSE decreases from 0.43 mm at μ=0.91  to 0.17 mm at  

μ=1.11,  and  to  0.11 mm  for μ=1.21.  

Nevertheless, increasing the value of the fractional order μ leads 

to significant oscillations in the control signals, which may 

degrade the tracking performance of the proposed controller. 

Table III outlines the RMSE and MAE of the fractional-order 

PD controller under different fraction orders.  

  
    Fig. 8: Control torque of joint 2. 

 

    Fig. 9: Control torque of joint 3. 

 

Fig. 10: Tracking error for different fractional derivative order of joint 1. 

 

Fig. 11: Tracking error for different fractional derivative order of joint 2. 

 

Fig. 12: Tracking error for different fractional derivative order of joint 3.  

     

Fig. 13: Control torque for different fractional derivative order of joint 1. 

 

Fig. 14: Control torque for different fractional derivative order of joint 2. 

Table. II 

TRACKING PERFORMANCE 

Performance                PD Fractional-order PD 

   RMSE (mm) 
 

            0.87 0.17 

   MAE (mm)             2.56 0.49 

   

 

 
Table. III 

TRACKING PERFORMANCE FOR DIFFERENT FRACTIONAL ORDERS 

Performance 

 

𝜇 = 1.21 

 

𝜇 =  0.91 𝜇 =  1.11 

  RMSE (mm) 
 

  0.11    0.87       0.17 

  MAE (mm)   0.44 

 

   2.56       0.49 
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Fig. 15: Control torque for different fractional derivative order of joint 3. 

V. CONCLUSION 

    In this paper, a model-free fractional-order PD controller is 

applied to a Delta robot to address the trajectory tracking 

problem. To improve the performance of the conventional PD 

controller, a fractional derivative order is introduced. 

Experimental studies on the Delta robot demonstrate the 

effectiveness of the proposed approach. The results show that 

the fractional-order PD controller achieves better tracking 

performance compared to the conventional PD controller, while 

both controllers exhibit similar control torques. It is also found 

that the fractional derivative order μ must be carefully chosen 

to balance tracking accuracy and smoothness of the control 

torque. 
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