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Fractional-order PD control of a parallel Delta robot:
Experimental results

Someya Amrane, Chems Eddine Boudjedir and Djamel Boukhetala

Abstract— In this paper, a fractional-order proportional-derivative (PD) controller is proposed as a means to enhance
the trajectory tracking performance of a parallel Delta robot. The highly coupled and nonlinear dynamics of the Delta
robot pose significant challenges for conventional integer-order PD controllers, often resulting in limited tracking
accuracy. To address these limitations, the integer-order derivative term is replaced by a fractional-order derivative,
thereby providing additional tuning flexibility and improved dynamic behavior. In experimental studies, a comparison
is conducted between the fractional-order and integer-order PD approaches, as well as an evaluation of the influence that

different fractional derivative orders have on robot tracking

performance.
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I. INTRODUCTION

Many theoretical contributions to fractional calculus have
been proposed by Euler, Liouville, Riemann, and Griinwald [1].
These definitions have been successfully applied in multiple
domains, such as electromagnetism and electrochemistry. For a
historical introduction to fractional calculus, the reader can
refer to [2].

The application of fractional calculus has experienced
significant growth over the last decades, due to its robustness
and improved tracking performance. Fractional calculus has
been applied in many engineering fields, such as robotics [3],
autonomous underwater vehicles [4], and wind turbine
generators [5].

Parallel kinematic robots offer several advantages over serial
robots, such as high rigidity, accuracy, and load capacity.
Professor Raymond Clavel invented the parallel Delta robot as
an efficient solution for repetitive pick-and-place operations.
The original prototype features three translational degrees of
freedom and one rotational degree of freedom [6]. The reader
may refer to the survey [7] for further designs of the Delta
robot.

The robot manipulator is commonly controlled using
conventional PID controllers [8]. However, this control law is
often inadequate for applications requiring high precision under
fast dynamic motions, due to the fact that the PD control
parameters are chosen without fully considering the coupling
effects. To overcome this issue and improve trajectory tracking
performance, many works have been proposed, such as
nonlinear PD control [9], iterative learning control [10-12],
time delay control [13], and sliding mode control [14].
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In recent years, both fractional calculus and model-free
control strategies have attracted considerable attention. Several
control frameworks have incorporated fractional-order
operators into the control loop, for instance, fractional adaptive
control [15] and robust control design CRONE [16].

Fractional-order PID controllers have demonstrated superior
robustness and performance compared to conventional PID
controllers. Podlubny's proposal introduced a generalized
fractional-order PID controller of the form PI* D, where A and
pu are non-integer orders. By appropriately tuning these
parameters, the tracking accuracy can be significantly
improved [1].

Fractional-order PID controllers have been further
investigated in [17], where the robustness and performance
were enhanced. In [18], the fractional-order PID controller was
applied to a planar parallel robot to improve trajectory tracking
accuracy. In [19], a fractional-order PID was designed to
control a parallel robot, resulting in reduced tracking error and
eliminated overshoot.

The main contribution of this paper is the design and
experimental implementation of a fractional-order PD
controller for trajectory tracking of a parallel Delta robot.
Experimental studies are conducted to evaluate the
effectiveness of the proposed approach. A comparative analysis
between the fractional-order PD controller and the
conventional integer-order PD controller is also conducted.

The remaining sections of this paper are organized as
follows: section II introduces the dynamic model of the Delta
robot. Section III presents the controller design. While in
section IV, experimental results are presented. Finally, section
V provides some conclusions.

II. DYNAMIC MODEL

The Delta robot shown in  Fig. 1 is equipped with three
kinematic chains, each consisting of a servo motor and a
reducer connected to the upper arm. The forearm of the Delta
robot is linked to both the upper arm and the travelling plate.
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Fig. 1: Delta Robot

The robot dynamics is described as in [11]:
M(@)G+Cqq+G6q) =7 (1
Where:
M(CI) =1, + mnt]T]
C(q,q) =] "mpJ
G(q) = —T6, — Tgy

The generalized joint vector is denoted as ¢ = [qy, G2, q3]7,
the inertia matrix is represented by M(q) € R3*3, the vector
resulting from centrifugal and Coriolis forces is denoted as
C(q,q)q € R®>*3. G(q) € R®*! refers to the gravitational vector.
T, T, and 7, represent, respectively, the joint torque, the torque
produced by the gravitational force of the arms and the torque
produced by the inertial force. The Jacobian matrix is denoted
as /, and its derivative respect to time is given as J.
my,; signifies the total mass, which includes the mass of the
travelling plate, the playload mass and the combined masses of
the three forearms.

The expression of the torques is given as follows:
TG, =/Tmnt[0 0— g]T
Tg, = MyTg,g[cosql cosq2 cos q3]”

(€))
“

The detailed expressions of J, /, m,,, and Tg,are givenin [11].
Table I describes the parameters of the robot.

Table. I
GEOMETRIC AND DYNAMIC PARAMETERS

Parameters DESCRIPTION Value
L, Upper arm length 0.380 m

L, Forearm length 0.205 m

m, Traveling plate mass 0.42 kg
my,. Upper arm mass 0.098 Kg
my, Forearms masses 0.028 Kg
m, Elbow mass 0.016 Kg

IIT. CONTROLLER DESIGN

The PD controller is proposed in joint space as follows:
T = kpoG(t) + kaod(t) ®)

In which, k, and kg are constant diagonal matrices. q(t) and
q(t) are given as follows:

G(t) = qaq(t) — q(t)
q(@®) = g,(t) — g (t)
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Where q4(t) and q;(t) represent the desired joint position
and the desired joint velocity, respectively. The actual joint
position and the actual joint velocity are denoted as g, (t) and
qx (t) respectively.

Since conventional PID controllers may not achieve
satisfactory performance for tasks requiring high precision,
many studies have applied fractional-order PID controllers to
improve accuracy and trajectory tracking. In this paper, a
fractional-order PD controller is implemented on the Delta
robot. The control law includes three parameters: the
proportional gain K, the derivative gain K4, and the derivative

fractional-order u.

By introducing the fractional derivative order, the controller
can achieve a satisfactory trade-off among the advantages and
drawbacks of the conventional PD controller, such as enhanced
stability provided by the derivative term, while mitigating its
main disadvantage, i.e., high sensitivity to noise.

The continuous differential operator is given by :

u
u_ d
) —

t Tgm H>0

Where, ¢ € R is the operation order.

Grunwald-Letnikov definition is given by :
are) o 1 i
o DEF@) = 22LE = im {ﬁzkio(—l)k (3) £t — k)
The fractional-order derivative of the function f requires
knowledge of f(t) over the interval [a, t], in contrast to the
integer order which only requires knowledge of f near t. This

feature leads to the conclusion that fractional-order systems are
long-memory systems.

The fractional-order PD controller is expressed as:

T =kpq(t) + kqD (1) ®)

where the torque t represents the control signal.

Fractional-order functions must approximated by integer-
order expressions to be easily handled during software
implementation. The numerical approximation for fractional
calculus used in this paper is the Griinwald—Letnikov method,
based on the Taylor expansion [1] :

k

(k—%)Dgc q(e) =~ h_”Z(_l)j (7) q(tx-;)

j=0

K
=hH E . OC]-(MC?(tk—j) )
j=

In which, ¢, = kh , h is the sampling period, and L represents
the memory length,

The binomial coefficients can be calculated as follows:

W _ 1+Hp\ (0
oW =(1- T) ™) (10)

and cg”) =1

The scheme of the fractional-order PD controller is shown in
Fig. 2, where IGM illustrates the inverse geometric model and
x4 denotes the desired trajectory in the operational space.

Remark 1: The fractional-order PD controller can be widely
used in industrial applications due to its ease of implementation.
Remark 2: Unlike the control strategies which require an exact
mathematical model, the fractional-order PD controller is
model-free.
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Remark 3: The parameters of the fractional-order PD
controller allow achieving a better trade-off between the
positive and negative effects of the derivative action.

Delta robot

PD fractional-order

Fig. 2: Scheme of the proposed controller.

IV.EXPERIMENTAL RESULTS

The experimental results obtained by applying the fractional-
order PD control law (8) on the Delta robot of Fig. 1 are
presented in this section.

The robot utilizes brushed DC motors with a belt-driven
transmission having a ratio of r=12. The operational trajectory
is executed with a maximum acceleration of 15 m/s? [23, 24].
The data were collected by sampling at 1 kHz, and the control
algorithms were implemented in C language.

The tracking performance evaluation involves the utilization
of the Maximum Absolute Error (MAE) and Root Mean Square
Error (RMSE) as criteria. The expressions of these criteria are
as follows:

1

n
nzizl(xi - Xdi)z

RMSE, =

)

MAE, = max (|xl- — xdi|) (12)
Where n represents the number of samples, x; represents the
desired trajectory in the operational space and x; is the actual
response in operational space.
The expression of the RMSE and MAE when considering all
the three axes is given by:

RMSE = ,/RMSEZ + RMSEZ + RMSE?
MAE = max (MAE,, MAE,, MAE,)

(13)
(14)

The controller gains and fractional-order are selected as k,, =
diag{2.2,2.2,2.2}, k; = diag{0.0145,0.0145,0.0145} and
u = 1.12. These parameters are obtained using an iterative
tuning procedure, in which tracking performance is evaluated
by varying one parameter at a time while holding the others
constant. The parameter k,, is maintained at a moderate level to
highlight the impact of the order y. Increasing k,, results in a
faster response; however, it may also amplify overshoot,
particularly when combined with a high u.

Fractional order PD |
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Fig. 3: The operational trajectory tracking under the fractional-order PD
controller
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Fig. 4: Experimental tracking error of joint 1.
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Fig. 5: Experimental tracking error of joint 2.
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Fig. 6: Experimental tracking error of joint 3.
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Fig. 7: Control torque of joint 1.

Fig 3 illustrates the trajectory tracking in the operational
space under the proposed fractional-order PD controller.
Figures 4, 5, and 6 depict the tracking error under the proposed
fractional-order PD and PD controller of joints 1, 2, and 3,
respectively. The figures point out that the tracking error under
the fractional-order PD is inferior compared to the error under
the PD controller. The proposed controller exhibits an RMS
error equal to 0.17 mm, which is less than 80.4% of that
provided by the PD controller. For MAE, the fractional PD
controller can ensure 0.49 mm, which is less than 80.8% of that
ensured by the PD controller.
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Figures 7, 8, and 9 show the control torque signals under the
PD and fractional-order PD controller for joints 1, 2, and 3,
respectively. It is observed that the torque signals have nearly
the same amplitude and variation. Table II presents the tracking

performance of both controllers.

Figs. 10 to 15 represent the tracking errors and control torque
signals under the fractional-order PD controller for different
derivative fractional-orders of joints 1, 2, and 3, respectively. It
can be observed that when ;=0 91, the tracking error is much
larger compared to the cases when =111 or y=121. The
RMSE decreases from 0.43 mm at ;=09] to 0.17 mm at

p=1.11, and to 0.11 mm for =1 2].

Nevertheless, increasing the value of the fractional order |, leads

to significant oscillations in the control signals, which may
degrade the tracking performance of the proposed controller.

Table III outlines the RMSE and MAE of the fractional-order

PD controller under different fraction orders.

PD
3F | PD frational order (u=1.117) | |

Torgue joint 2 (N.m)

0 0.5 1 1.5 2 2.5 3 3.5 4
time(s)

Fig. 8: Control torque of joint 2.
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T

Torque joint 3 {N.m)
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Fig. 9: Control torque of joint 3.

Table. IT
TRACKING PERFORMANCE
Performance PD Fractional-order PD
RMSE (mm) 0.87 0.17
MAE (mm) 2.56 0.49
Table. 111

TRACKING PERFORMANCE FOR DIFFERENT FRACTIONAL ORDERS

Performance uw=121 u= 091 n= 111
RMSE (mm) 0.11 0.87 0.17
MAE (mm) 0.44 2.56 0.49

S.Amrane et al.: Fractional-order PD . . .
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Fig. 10: Tracking error for different fractional derivative order of joint 1.
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Fig. 11: Tracking error for different fractional derivative order of joint 2.
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Fig. 12: Tracking error for different fractional derivative order of joint 3.
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Fig. 13: Control torque for different fractional derivative order of joint 1.
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Fig. 14: Control torque for different fractional derivative order of joint 2.
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Fig. 15: Control torque for different fractional derivative order of joint 3.

V. CONCLUSION

In this paper, a model-free fractional-order PD controller is
applied to a Delta robot to address the trajectory tracking
problem. To improve the performance of the conventional PD
controller, a fractional derivative order is introduced.
Experimental studies on the Delta robot demonstrate the
effectiveness of the proposed approach. The results show that
the fractional-order PD controller achieves better tracking
performance compared to the conventional PD controller, while
both controllers exhibit similar control torques. It is also found
that the fractional derivative order p must be carefully chosen
to balance tracking accuracy and smoothness of the control
torque.
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