Magnetic Field Calculation for Flat Permanent-Magnet Linear Machines Using a Hybrid Analytical Model

Brahim Ladghem-Chikouche, Kamel Boughrara, Frédéric Dubas, Lazhar Roubache, and Rachid Ibtiouen

Abstract—This paper proposes an improved two-dimensional (2-D) hybrid analytical method (HAM) in Cartesian coordinates, based on the exact subdomain (SD) technique and the finite-difference method (FDM). It is applied to flat permanent-magnet (PM) linear machines with dual-rotor. The magnetic field solution is obtained by coupling an exact SD model, calculated in all regions having relative permeability equal to unity, with FDM in ferromagnetic regions. The analytical model and FDM are connected in both axes (x,y) of the (non-)periodicity direction (i.e., in the interface between the tooth regions and all its adjacent regions as slots and/or air-gap). To provide accuracy solutions, the current density distribution in slot regions is modeled by using Maxwell’s equations. It is found that, whatever the iron core magnetic parameters, the developed HAM gives accurate results for no- and on-load conditions. Finite-element analysis (FEA) demonstrates excellent results of the developed technique.

Keywords— Hybrid magnetic model, exact subdomain technique, finite difference method, finite-element analysis.

I. INTRODUCTION

Flat PM linear machines with dual-rotor present many important industrial applications due to their multiple advantages compared to conventional machines, namely: compactness, high-torque density, precise control, and dynamic performance.

Recently, several design models have been proposed and developed for these machines in view to introduce the nonlinearity of the $B(H)$ curve into the analytical solution, such as the analytical approach (e.g., based on the exact SD technique) or/and the HAM. The latter has become important and is preferred for different reasons, such as the accuracy, the saturation effect, and the computation time.

One of the critical deficiencies of the different published methods and techniques concerns the magnetic characteristic of ferromagnetic core, when the authors, to facilitate their calculations, suppose that the iron core relative permeability is equal to infinity. This problem has been solved by different technique such as the HAM which has been proposed by different techniques:

i. In [1]-[2], a coupling between the Maxwell-Fourier methods and FEA is achieved via the boundary integral term in the air-gap region. The proposed method eliminates the need for finite-elements in the air-gap. In [2], the saturation effect is considered.

ii. In [3]-[12], a coupling between the Maxwell-Fourier methods and the magnetic equivalent circuit (MEC) are presented for no- and on-load conditions. In [3], the magnetic potential drop can be replaced by equivalent current sheets in the slots in order to represent the nonlinearity magnetostatic effect for loaded conditions. The hybrid method is used for the analysis of axial or radial flux rotating or tubular linear machines. Some of them can consider the saturation effect on the exact SD technique. The armature winding currents is represented by equivalent magneto-motive force (MMF).

iii. Improved conformal mapping coupled with MEC is presented in [13]-[16]. This technique has been validated for any complex stator. It is suitable for machines with small number of slots per pole and phase.

iv. In [17]-[18], a direct coupling between FEA and MEC is proposed. However, in [18], the proposed MEC is used to predict the no-load characteristics firstly and then the proposed 2-D equivalent FEA is used to predict the load characteristics at the preliminary design stage.

v. In [19]-[22], a coupling between FDM and FEA is developed.

vi. The electromagnetic performances are calculated by means of a 2-D HAM combining the SD technique and FDM [23]-[24].

Manuscript received May 5, 2021; revised July 26, 2021.

Brahim Ladghem-Chikouche is with the Department of Electrical Engineering, Faculty of Technology, University of M'sila, Algeria and with Laboratoire de Recherche en Electrotechnique (LRE-ENP), Ecole Nationale Polytechnique, Algeria (e-mail: brahim.lch@univ-msila.dz).

Kamel Boughrara, and Rachid Ibtiouen are with LRE-ENP, Ecole Nationale Polytechnique, (e-mail: kamel.boughrara@g.enp.edu.dz, rachid.ibtiouen@gmail.com).

Frédéric Dubas is with Département ENERGIE, FEMTO-ST, CNRS, Univ. Bourgogne Franche-Comté, F90000 Belfort, France (e-mail: fdubas@gmail.com).

Lazhar Roubache is with the Department of Electrical Engineering, Faculty of Technology, University of M'sila, Algeria (e-mail: roubache.lazhar@gmail.com).

Digital Object Identifier (DOI): 10.53907/enpesj.v1i2.36
(x- and y-edges) considering the finite permeability of the ferromagnetic core.

![Fig. 1: Proposed flat linear PM synchronous machine with dual-rotor having a radial magnetization and a single-layer concentrated winding.](image)

TABLE I MACHINE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter (unit)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{rm}</td>
<td>Remanent of flux density of PMs (T)</td>
<td>1.25</td>
</tr>
<tr>
<td>-</td>
<td>Magnetization type</td>
<td>Radial</td>
</tr>
<tr>
<td>Q</td>
<td>Number of stator slots per pole</td>
<td>3</td>
</tr>
<tr>
<td>y_s</td>
<td>Inner magnet height (mm)</td>
<td>7</td>
</tr>
<tr>
<td>y_o</td>
<td>Outer magnet height (mm)</td>
<td>12</td>
</tr>
<tr>
<td>y_i</td>
<td>Inner slot height (mm)</td>
<td>12.5</td>
</tr>
<tr>
<td>y_r</td>
<td>Outer slot height (mm)</td>
<td>27.5</td>
</tr>
<tr>
<td>y_a</td>
<td>Outer magnet height (mm)</td>
<td>28</td>
</tr>
<tr>
<td>y_l</td>
<td>Inner magnet height (mm)</td>
<td>33</td>
</tr>
<tr>
<td>β</td>
<td>PM pole-width to pole-pitch ratio</td>
<td>100%</td>
</tr>
<tr>
<td>w</td>
<td>Slot opening width (mm)</td>
<td>12</td>
</tr>
<tr>
<td>τ_p</td>
<td>Pole pitch (mm)</td>
<td>60</td>
</tr>
<tr>
<td>f_m</td>
<td>Armature current density (A/m²)</td>
<td>15×10^6</td>
</tr>
<tr>
<td>l</td>
<td>Axial length (mm)</td>
<td>50</td>
</tr>
<tr>
<td>nh</td>
<td>Harmonics number</td>
<td>140</td>
</tr>
</tbody>
</table>

To evaluate the efficacy of the proposed HAM, the magnetic flux density distribution in the whole electromagnetic device was compared with those obtained by the 2-D FEA [25]. FEA demonstrates highly accurate results of the developed technique. The 2-D HAM is ≈ 2 times faster than 2-D FEA with high accuracy.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

The proposed flat PM linear synchronous machine with rotor-dual is depicted in Fig. 1. The main geometrical and physical parameters are listed in Table I. This machine is composed of:

- PMs: Region I and IV;
- Vacuum: Region II and III;
- Q slots with coils: Region V;
- Q teeth: Region VI;
- Iron yokes: Region VII and VIII.

The rotor topology is constituted of multi-poles PMs mounted on the rotor surface with a radial magnetization. The moving PMs can have a more diversity of magnetization. The stator slots topology is proposed with a radial-sided surface. The spatial distribution of 3- phases winding is configured in a standard manner with a single-layer in the slot (i.e., non-overlapping or concentrated winding).

In the 2-D cartesian coordinate system, some assumptions are made in this paper to limit the mathematical efforts, as in [26]-[27].

III. FORMULATION OF HAM

A. Introduction

In this paper, a 2-D HAM based on the SD technique and FDM is presented. Each SD of the proposed machine is modeled under fixed absolute permeability $\mu = C^{st}$. The SDs are expressed by a partial differential equation (PDE) in terms of A

$$\nabla^2 A = -[\mu J + \mu_0 \nabla \times M_r] $$ \hspace{1cm} (1)

where J is the current density (due to supply currents) vector, M_r is the remanent magnetization vector (with $M_r = 0$ for the vacuum/iron or $M_r \neq 0$ for the PMs according to the magnetization direction), and $\mu = \mu_0 \mu_r$ is the absolute magnetic permeability of the magnetic material in which μ_0 and μ_r are respectively the vacuum permeability and the relative permeability of the magnetic material (with $\mu_r = 1$ for the vacuum or $\mu_r \neq 1$ for the PMs/iron).

B. 2-D Exact SD Technique

From Equation (1), the general PDEs in terms of A in the Region I to V can be written as:

$$\nabla^2 A = -\mu_0 \nabla \times M_r \text{ in Region I and IV} \hspace{1cm} (2a)$$

$$\nabla^2 A = 0 \text{ in Region II and III} \hspace{1cm} (2b)$$

$$\nabla^2 A = -\mu_0 J \text{ in Region V} \hspace{1cm} (2c)$$

The remanent magnetization vector of PMs can be expressed by

$$M_r = M_{rx} u_x + M_{ry} u_y \hspace{1cm} (3)$$

where M_{rx} and M_{ry} are respectively the x- and y-component of M_r.

The field vectors $B = \{B_x, B_y, B_z\}$ and $H = \{H_x, H_y, H_z\}$ are coupled by the magnetic material equation

$$B = \mu_m H + \mu_0 M_r \text{ in Region I and IV} \hspace{1cm} (4)$$

$$B = \mu_0 H \text{ in other regions} \hspace{1cm} (5)$$

Using $B = \nabla \times A$, the components of B can be deduced by

$$B_x = \frac{\partial A_y}{\partial y} \text{ & } B_y = -\frac{\partial A_x}{\partial x} \hspace{1cm} (6)$$

In Cartesian coordinates (x, y), Equation (2) in terms of $A = \{A_x, A_y, A_z\}$ can be rewritten as

- in Region I and IV (i.e., Poisson’s equation):

$$\frac{\partial^2 A_x^{IV}}{\partial x^2} + \frac{\partial^2 A_y^{IV}}{\partial y^2} = -\mu_0 \left(\frac{\partial M_{ry}}{\partial x} - \frac{\partial M_{rx}}{\partial y} \right) \hspace{1cm} (7)$$

- in Region II and III (i.e., Laplace’s equation):

$$\frac{\partial^2 A_x^{III}}{\partial x^2} + \frac{\partial^2 A_y^{III}}{\partial y^2} = 0 \hspace{1cm} (8)$$

- in Region V (i.e., Poisson’s equation):

$$\frac{\partial^2 A_x^V}{\partial x^2} + \frac{\partial^2 A_y^V}{\partial y^2} = -\mu_0 J_x \hspace{1cm} (9)$$

In order to obtain the solution of Laplace’s and Poisson
equations in different regions, the PDEs (7) ~ (9) can be solved by using the separation of variables method and the Dubas’ superposition technique [27]. All regions of the proposed machine are described by Fourier series expression in both directions (i.e., x- and y-edges). Hence, the general solution of \(A_z \), in SDS is the superposition of two components in x- and y-directions [26]-[27]:

- in Region I and IV:
 \[
 A_z^{IV} = \sum_n \left(C_{1n}^{IV} \cdot e^{jK_n y} + C_{2n}^{IV} \cdot e^{-jK_n y} \right) \cdot \sin(K_n x) \\
 + \sum_n \left(C_{3n}^{IV} \cdot e^{jK_n y} + C_{4n}^{IV} \cdot e^{-jK_n y} \right) \cdot \cos(K_n x)
 \]
(10a)

where

\[
K_n = \frac{\pi n}{\tau_p}, \quad \Gamma_x = -\mu_0 \cdot \frac{M_{yvn}}{K_n}, \quad \Gamma_c = \mu_0 \cdot \frac{M_{xvn}}{K_n}
\]

\(\tau_p \) is the pole pitch.

- in Region II and III:
 \[
 A_z^{III} = \sum_n \left(C_{1n}^{III} \cdot e^{jK_n y} + C_{2n}^{III} \cdot e^{-jK_n y} \right) \cdot \sin(K_n x) \\
 + \sum_n \left(C_{3n}^{III} \cdot e^{jK_n y} + C_{4n}^{III} \cdot e^{-jK_n y} \right) \cdot \cos(K_n x)
 \]
(11)

- in Region V:
 \[
 A_z^V = \sum_m \sum_v G_{mx}^V \cdot \cos \left[\beta_m^V \cdot (x - \alpha_z + \frac{w}{2}) \right] + \sum_m G_{xy}^V \cdot \sin \left[\lambda_y^V \cdot (y - y_3) \right]
 \]
(12a)

\[
G_{mx}^V = C_{x3m}^V \cdot e^{j\beta_m^V y} + C_{x4m}^V \cdot e^{-j\beta_m^V y} \\
G_{xy}^V = C_{x5}^V \cdot \sinh \left[\lambda_y^V \cdot (x - \alpha_z + \frac{w}{2}) \right] + C_{x6}^V \cdot \sinh \left[\lambda_y^V \cdot (x - \alpha_z - \frac{w}{2}) \right]
\]
(12b)

with

\[
I_{zs} = \begin{bmatrix} 1 & 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}
\]
(13)

where \(I_m \) is the current density peak, \(w \) is the slot-opening, \(\alpha_z \) is the position of the \(s \)-th slot, \(m \) and \(v \) are the spatial harmonic orders, \(\beta_m^V \) and \(\lambda_y^V \) are the spatial frequency (or periodicity) in both directions defined by:

\[
\beta_m^V = \frac{m \pi}{w} \quad \& \quad \lambda_y^V = \frac{v \pi}{y_4 - y_3}
(14)

C. 2-D FDM

In Region VI, the solution of magnetic vector potential distribution can be achieved from numerical Maxwell’s equations. According to Fig. 2, the grill nodes located in the ferromagnetic region is obtained with a uniform mesh. The magnetic flux can be written as:

\[
\frac{\Delta^2 A_{y}^{VI}}{\Delta x^2} + \frac{\Delta^2 A_{y}^{VI}}{\Delta y^2} = 0
\]
(15)

Equation (6) should be rewritten using numerical differentiation defined as the limit of a difference quotient as:

\[
B_x(x) = \lim_{\Delta y \to 0} \frac{\Delta A}{\Delta y} \quad & \quad B_y(y) = \lim_{\Delta x \to 0} \left(-\frac{\Delta A}{\Delta x} \right)
\]
(16)

The difference quotient \(B_x(x) \) and \(B_y(y) \) is a derivative approximation. This improves as \(\Delta x \) and \(\Delta y \) become smaller.

\[
\Delta x = x_{s,j+1} - x_{s,j} \\
\Delta y = y_{j,i+1} - y_{j,i}
\]
(17a)

According to Equation (15) and Fig. 2, each term of the PDE at the particular node is replaced by a finite-difference approximation. The distribution of \(A_z \) in the Region VI can be rewritten as:

\[
A_{z,s,j+1}^{VI} - 2A_{z,s,i}^{VI} + A_{z,s,i-1}^{VI} \\
+ \frac{A_{z,s,i+1}^{VI} - 2A_{z,s,i,j}^{VI} + A_{z,s,i-1}^{VI}}{\Delta y^2} = 0
\]
(18)

IV. BOUNDARY AND INTERFACE CONDITIONS

The special feature of this paper is to establish a direct coupling between the two models, especially between regions that do not have the same relative permeability, such as the Region VI and its adjacent regions (namely, II, III and V). For simplicity and to limit the mathematical efforts, the Region VII and VIII are not introduced in the system to be solved. The relative permeability of these regions is supposed to be equal to infinity. It is easy to add these regions in the HAM. For this case and,

- At \(y = y_3 \) and for the index \(s = 1, \cdots, Q \):
 \[
 A_{z,s,i}^{VI} = \frac{1}{\Delta x} \int_{x_{s,i,j}}^{x_{s,i,j+1}} A_{y}^{VI}(x,y) dx
 \]
(19)

\[
\left(A_{y}^{VI}(x,y) = A_{z}^{VI}(x,y) \right) \left[\alpha_{z}^{-} + \frac{w}{2} + \frac{w}{2} \sinh \left(\frac{w}{2} \right) \right]
\]
(20)

\[
H_{x}^{VI}(x,y) = \sum_s \left(H_{x}^{VI}(x,y) \left[1 - \alpha_{z}^{-} \sinh \left(\frac{w}{2} \right) \right] \right)
\]
(21)
In order to satisfy Equation (21), the magnetic flux intensity \(H_{x}^{VI}(x, y) \) by applying Equation (16) should be written as:

\[
H_{x}^{VI}(x, y) = \frac{1}{\mu_{0}\mu_{r}} \sum_{j=2}^{N_{c}-1} \left(A_{x}^{VI}_{x,j} - A_{x}^{VI}_{x,j-1} \right) \frac{1}{\Delta y} f_{y} \tag{22a}
\]

\[
f_{y} = \sum_{v} \left[h_{x\text{xx}}^{VI} \sin(K_{n}x) + h_{x\text{xx}}^{VI} \cos(K_{n}x) \right] \tag{22b}
\]

where \(h_{x\text{xx}}^{VI} \) & \(h_{x\text{xx}}^{VI} \) are the Fourier’s constants, and \(N_{c} \) is the number of grid nodes in the x-direction.

- At \(y = y_{s} \) and for the index \(s = 1, \ldots, Q \):

\[
A_{x}^{VI}_{x,N,l,j} = \frac{1}{\Delta x} \int_{x_{s,j}}^{x_{s,j+1}} A_{x}^{II}(x, y) \text{d}x \tag{23}
\]

\[
\left(A_{x}^{VI}(x, y) = A_{x}^{II}(x, y) \right) \left(\alpha_{s}^{w} \frac{w}{w_{x}w_{y}w_{z}} + \frac{w}{w_{x}w_{y}w_{z}} \right) \tag{24}
\]

\[
H_{x}^{VI}(x, y) = \sum_{s} \left(H_{x}^{VI}(x, y) \left(\alpha_{s}^{w} \frac{w}{w_{x}w_{y}w_{z}} + \frac{w}{w_{x}w_{y}w_{z}} \right) \right) \tag{25}
\]

In order to satisfy Equation (25), the magnetic flux intensity \(H_{x}^{VI}(x, y) \) by applying Equation (16) should be written as:

\[
H_{x}^{VI}(x, y) = \frac{1}{\mu_{0}\mu_{r}} \sum_{j=2}^{N_{c}-1} \left(A_{x}^{VI}_{x,l,j} - A_{x}^{VI}_{x,l-1,j} \right) \frac{1}{\Delta y} f_{y} \tag{26}
\]

On the y-direction, viz., on the edges of the Region V and VI and for the index \(s = 1, \ldots, Q \):

- for \(x = \alpha_{s} + w/2 \):

\[
A_{x}^{VI}_{x,l,1} = \frac{1}{\Delta y} \int_{y_{3,l}}^{y_{3,l+1}} A_{x}^{II}(x, y) \text{d}y \tag{27}
\]

\[
H_{y}^{VI}(x, y) = H_{y}^{II}(x, y) \tag{28}
\]

where

\[
H_{y}^{VI}(x, y) = \frac{1}{\mu_{0}\mu_{r}} \sum_{l=2}^{N_{l}-1} \left(A_{x}^{VI}_{x,l,2} - A_{x}^{VI}_{x,l-1,2} \right) \frac{1}{\Delta x} \cdot h_{y\text{xx}}^{VI} \sin[\lambda \cdot (y - y_{2})] \tag{29}
\]

where \(N_{l} \) is the number of grid nodes in the y-direction and \(h_{y\text{xx}}^{VI} \) is the Fourier’s constants.

For the index \(s = 2, \ldots, Q \) and:

- for \(x = \alpha_{s} - w/2 \):

\[
A_{x}^{VI}_{x,l,Nc} = \frac{1}{\Delta y} \int_{y_{3,l}}^{y_{3,l+1}} A_{x}^{II}(x, y) \text{d}y \tag{30}
\]

\[
H_{y}^{VI}(x, y) = H_{y}^{II}(x, y) \tag{31}
\]

where

\[
H_{y}^{VI}(x, y) = \frac{1}{\mu_{0}\mu_{r}} \sum_{l=2}^{N_{l}-1} \left(A_{x}^{VI}_{x,l,Nc} - A_{x}^{VI}_{x,l,Nc-1} \right) \frac{1}{\Delta x} \cdot h_{y\text{xx}}^{VI} \sin[\lambda \cdot (y - y_{2})] \tag{32}
\]

Anti-periodic BCs are applied and given as:

\[
A_{x}^{VI}_{x,l,Nc} = -\frac{1}{\Delta y} \int_{y_{3,l}}^{y_{3,l+1}} A_{x}^{II}(x, y) \text{d}y \tag{33}
\]

\[
H_{y}^{VI}(x, y) = -H_{y}^{II}(x, y) \tag{34}
\]

V. COMPARISON OF HAM AND NUMERICAL CALCULATIONS

About the FEA, FEMM designer was used, and the analytical calculations were computed by MATLAB. The number of nodes and elements are 84,019 and 167,089, respectively. These results have been calculated under an acceptable amount of discretization of the Region VI (viz., \(N_{c} = 25 \) and \(N_{l} = 15 \)).

Figs. 3 ~ 4 shown the comparison of the air-gap flux density distribution with a radial magnetization pattern in the middle of the Region II for \(\mu_{r} = 1,000 \) in all ferromagnetic regions.

Excellent agreement is achieved between HAM and FEM.
Fig. 4: Comparison of HAM and FEA predicted for the open-circuit magnetic flux density distribution with a radial magnetization pattern in the middle of the Region II for $\mu_r = 2$ in all ferromagnetic regions.

Fig. 5: Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of the Region II for $\mu_r = 1,000$ in all ferromagnetic regions.

Fig. 6: Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of the Region II for $\mu_r = 2$ in all ferromagnetic regions.

Table II. 2-D Computational Time for Various Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>HAM</th>
<th>FEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$nh = 140$</td>
<td>Two poles</td>
</tr>
<tr>
<td>$n_c = 25, N_l = 15$</td>
<td>84,019 nodes</td>
<td></td>
</tr>
<tr>
<td>Time (sec)</td>
<td>~ 3</td>
<td>~ 7.5</td>
</tr>
</tbody>
</table>

Figs. 7 ~ 10 show the magnetic flux density distribution in all parts of an electrical machine calculated by HAM and compared to FEA with different values of iron core relative permeability (viz., $\mu_r = 2$ and 1,000) as well as the error level calculated by

$$\|B_{\text{error}}\| = \frac{\|B_{\text{FEA}}\| - \|B_{\text{HAM}}\|}{\text{mean}(\|B_{\text{FEA}}\|)} \times 100\%$$

(35)

Each SDs of the proposed machine is divided into 50 levels in the y-direction and each level is composed to 1,200 points in the x-direction. We can observe that the errors can be localized in the interface between two adjacent regions or in the edges of PMs and that because of the fluctuations due to limiting number of Fourier series harmonics.

Table II shown the computation time for the magnetic flux density calculation by HAM and FEA.

VI. CONCLUSION

This paper presents a new HAM based on an accurate SD model and FDM for the flat PM linear synchronous machine with rotor-dual having a radial magnetization and a single-layer concentrated winding. The proposed approach is modeled in 2-D Cartesian coordinates using Maxwell’s equations. The coupling between the two models is performed especially in the interface when two adjacent regions have not the same magnetic parameters (e.g., in the interface between teeth regions and all its adjacent regions). It was performed in both directions (x- and y-edges) in order to gives accurate results, especially in case of saturation effect.

The HAM was used to predict the magnetic flux density components whatever the loading conditions (i.e., the open-circuit and the armature reaction) and the iron core relative permeability. The comparison with 2-D FEA demonstrates excellent results of the developed approach. The computational time is ≈ 2 times smaller than FEA.

The high impact contributions of this approach can now focus our attention on the optimization of the machine performances, in particular with the local saturation effect through elementary SD technique [28] by inserting the $B(H)$ curve which will be proposed in a future contribution.
Fig. 7: a) $\|B_{\text{error}}\|$(%) distribution calculated by the difference between b) HAM and c) FEA under no-load condition for $\mu_r = 1,000$.

Fig. 8: a) $\|B_{\text{error}}\|$(%) distribution calculated by the difference between b) HAM and c) FEA under no-load condition for $\mu_r = 2$.

Fig. 9: a) $\|B_{\text{error}}\|$(%) distribution calculated by the difference between b) HAM and c) FEA under armature reaction condition for $\mu_r = 1,000$.

Fig. 10: a) $\|B_{\text{error}}\|$(%) distribution calculated by the difference between b) HAM and c) FEA under armature reaction condition for $\mu_r = 2$.

ACKNOWLEDGMENT

The authors acknowledge the financial support of the General Directorate of Scientific Research and Technological Development (DGRSDT) of Algeria.

REFERENCES

Brahim Ladghem-Chikouche was born in M’sila, Algeria, in 1981. He received the Engineer Diploma degree from the University of M’sila, M’ila, Algeria, in 2005, the Magister and the Ph.D degree from Ecole Nationale Polytechnique (ENP), Algiers, Algeria, in 2009 and 2018 respectively. Before joining the University of M’sila in 2009, he has served in the industrial equipment maintenance sector, and electricity production company SPE-SONELGAZ, M’sila. He is currently a Lecturer at the department of Electrical Engineering, Faculty of Technology, University of M’sila, Algeria and member of the Laboratoire de Recherche en Electrotechnique (LR-ENP), Ecole Nationale Polytechnique, Algiers, Algeria. His current research interests include electromagnetic actuation systems modeling and design.

Kamel Bouhraga was born in Algiers, Algeria, in 1969. He received the Engineer Diploma degree from Ecole Nationale Polytechnique (ENP), Algiers, in 1994, the Magister degree from the University of Sciences and Technology Houari Boumediene, Algiers, in 1997, and the Ph.D. degree from ENP, in 2008. He is currently a Professor with ENP, where he is also the head of department of Electrical Engineering. His current research interests include the modeling and control of electrical machines.

Frédéric Dubas was born in Vosoul, France, in 1978. He received the M.Sc. degree and the Ph.D. degree from the “Univ. Bourgogne Franche-Comté” (Besançon, France) in 2002 and 2006, respectively, with a focus on the design and the optimization of high-speed surface-mounted permanent-magnet (PM) synchronous motor for the drive of a fuel cell air-compressor. From 2014 to 2016, he has been the Head of “Unconventional Thermal and Electrical Machines” Team. He is the Head of the “Electrical Actuators” group in the “Hybrid & Fuel Cell Systems, Electrical Machines (SHARPAC)” Team. He works with ALSTOM Transports (Ornans, France), and RENAULT Technocenter (Guyancourt, France), where he is involved in the modelling, design and optimization of electrical systems and, in particular, induction and PM synchronous (radial and/or

axial flux) machines, creative problem solving, and electrical propulsion/traction. He is currently an Associate Professor with the Dép. ENERGIE, FEMTO-ST Institute affiliated to the CNRS and jointly with the “Univ. Bourgogne Franche-Comté” (Besançon, France).

He has authored over 100 refereed publications and he holds a patent about the manufacturing of axial-flux PM machines with flux-focusing. Dr. Dubas received: i) the Prize Paper Awards in the IEEE Conference Vehicle Power and Propulsion (VPPC) in 2005, ii) the Prize Presentation Awards in the 19th International Conference on Electrical Machines and Systems (ICEMS) in 2017, iii) the RENAULT Internal Award (Direction Engineering Alliance – Innovation) in 2019.

Lazhar Roubache was born in M’sila, Algeria, in 1991. He received the master’s degree and the Ph.D. degree from Ecole Nationale Polytechnique (ENP), Algiers, Algeria, in 2015 and 2019. From 2019 to 2020, he was R&D engineer at Société d’Accélération du Transfert de Technologie Satt-Nord (Lille, France). His current research interests include designs, modeling, optimization, and control of electrical machines.

Rachid Ibtiouen received the Ph.D. degree in electrical engineering from Ecole Nationale Polytechnique (ENP), Algiers, Algeria, and the Institut National Polytechnique de Lorraine, Nancy, France, in 1993. He was with the Groupe de Recherche en Électrotechnique et Électronique de Nancy (GREEN), Nancy, from 1988 to 1993. From 2005 to 2013, he was the Director of the Laboratoire de Recherche en Electrotechnique (LRE) with ENP. His current research interests include the modelling electric systems and drives, and, in particular, electrical machines.