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Magnetic Field Calculation 
for Flat Permanent-Magnet Linear Machines 

Using a Hybrid Analytical Model 

Brahim Ladghem-Chikouche, Kamel Boughrara, Frédéric Dubas, Lazhar Roubache, and Rachid Ibtiouen 

Abstract−This paper proposes an improved two-dimensional (2-D) hybrid analytical method (HAM) in Cartesian 
coordinates, based on the exact subdomain (SD) technique and the finite-difference method (FDM). It is applied to flat 
permanent-magnet (PM) linear machines with dual-rotor. The magnetic field solution is obtained by coupling an exact 
SD model, calculated in all regions having relative permeability equal to unity, with FDM in ferromagnetic regions. The 
analytical model and FDM are connected in both axes (𝒙, 𝒚) of the (non-)periodicity direction (i.e., in the interface 
between the tooth regions and all its adjacent regions as slots and/or air-gap). To provide accuracy solutions, the current 
density distribution in slot regions is modeled by using Maxwell’s equations. It is found that, whatever the iron core 
magnetic parameters, the developed HAM gives accurate results for no- and on-load conditions. Finite-element analysis 
(FEA) demonstrates excellent results of the developed technique. 

Keywords− Hybrid magnetic model, exact subdomain technique, finite difference method, finite-element analysis. 
 

I. INTRODUCTION 

Flat PM linear machines with dual-rotor present many important 
industrial applications due to their multiple advantages compared 
to conventional machines, namely: compactness, high-torque 
density, precise control, and dynamic performance. 

Recently, several design models have been proposed and 
developed for these machines in view to introduce the 
nonlinearity of the B(H) curve into the analytical solution, such 
as the analytical approach (e.g., based on the exact SD 
technique) or/and the HAM. The latter has become important 
and is preferred for different reasons, such as the accuracy, the 
saturation effect, and the computation time. 

One of the critical deficiencies of the different published 
methods and techniques concerns the magnetic characteristic of 
ferromagnetic core, when the authors, to facilitate their 
calculations, suppose that the iron core relative permeability is 
equal to infinity. This problem has been solved by different 
technique such as the HAM which has been proposed by 
different techniques: 

i. In [1]-[2], a coupling between the Maxwell-Fourier 
methods and FEA is achieved via the boundary integral 

term in the air-gap region. The proposed method 
eliminates the need for finite-elements in the air-gap. In 
[2], the saturation effect is considered. 

 

ii. In [3]-[12], a coupling between the Maxwell-Fourier 
methods and the magnetic equivalent circuit (MEC) 
are presented for no- and on-load conditions. In [3], 
the magnetic potential drop can be replaced by 
equivalent current sheets in the slots in order to 
represent the nonlinearity magnetostatic effect for 
loaded conditions. The hybrid method is used for the 
analysis of axial or radial flux rotating or tubular linear 
machines. Some of them can consider the saturation 
effect on the exact SD technique. The armature 
winding currents is represented by equivalent 
magneto-motive force (MMF). 

iii. Improved conformal mapping coupled with MEC is 
presented in [13]-[16]. This technique has been 
validated for any complex stator. It is suitable for 
machines with small number of slots per pole and 
phase. 

iv. In [17]-[18], a direct coupling between FEA and MEC 
is proposed. However, in [18], the proposed MEC is 
used to predict the no-load characteristics firstly and 
then the proposed 2-D equivalent FEA is used to predict 
the load characteristics at the preliminary design stage. 

v. In [19]-[22], a coupling between FDM and FEA is 
developed. 

vi. The electromagnetic performances are calculated by 
means of a 2-D HAM combining the SD technique and 
FDM [23]-[24]. 

This paper deals with new HAM based on the Maxwell-
Fourier methods, based on the exact SD technique, and FDM. 
It covers comprehensively any modeling related to a complex 
electromagnetic device. In this paper, the HAM is applied to 
flat PM linear machines with dual-rotor. The main 
contribution is to establish a direct coupling between the SD 
technique and numerical method based on the finite-
difference in the interface separating the iron core and the 
vacuum. In order to accurately predict the electromagnetic 
performances, a direct coupling is assumed in both directions 
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(x- and y-edges) considering the finite permeability of the 
ferromagnetic core. 

 

 

Fig. 1:  Proposed flat linear PM synchronous machine with dual-rotor having 
a radial magnetization and a single-layer concentrated winding. 

 

TABLE .I 
MACHINE CHARACTERISTICS 

To evaluate the efficacy of the proposed HAM, the magnetic 
flux density distribution in the whole electromagnetic device 
was compared with those obtained by the 2-D FEA [25]. FEA 
demonstrates highly accurate results of the developed 
technique. The 2-D HAM is ≈ 2 times faster than 2-D FEA with 
high accuracy. 

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

The proposed flat PM linear synchronous machine with rotor-
dual is depicted in Fig. 1. The main geometrical and physical 
parameters are listed in Table I. This machine is composed of: 

 PMs: Region I and IV; 

 Vacuum: Region II and III; 

 𝑄 slots with coils: Region V; 

 𝑄 teeth: Region VI; 

 Iron yokes: Region VII and VIII. 

The rotor topology is constituted of multi-poles PMs mounted 
on the rotor surface with a radial magnetization. The moving 
PMs can have a more diversity of magnetization. The stator 
slots topology is proposed with a radial-sided surface. The 
spatial distribution of 3-phases winding is configurated in a 
standard manner with a single-layer in the slot (i.e., non-

overlapping or concentrated winding). 

In the 2-D cartesian coordinate system, some assumptions are 
made in this paper to limit the mathematical efforts, as in [26]-
[27]. 

III. FORMULATION OF HAM 

A. Introduction 

In this paper, a 2-D HAM based on the SD technique and FDM 
is presented. Each SD of the proposed machine is modeled 
under fixed absolute permeability 𝜇 = 𝐶௦௧. The SDs are 
expressed by a partial differential equation (PDE) in terms of 𝑨 
[27]. 

∇ଶ𝑨 = −[𝜇 𝑱 + 𝜇଴ ∇ × 𝑴𝒓]                       (1) 

where 𝐽 is the current density (due to supply currents) vector, 
𝑴𝒓 is the remanent magnetization vector (with 𝑴𝒓 = 0 for the 
vacuum/iron or 𝑴𝒓 ≠ 0 for the PMs according to the 
magnetization direction), and 𝜇 = 𝜇଴𝜇௥ is the absolute 
magnetic permeability of the magnetic material in which 𝜇଴ and 
𝜇௥  are respectively the vacuum permeability and the relative 
permeability of the magnetic material (with 𝜇௥ = 1  for the 
vacuum or 𝜇௥  ≠ 1 for the PMs/iron). 

B. 2-D Exact SD Technique 

From Equation (1), the general PDEs  in terms of 𝑨 in the 
Region I to V can be written as: 

∇ଶ𝑨 = −𝜇௢ 𝛁 × 𝑴𝒓   in Region I and IV                (2a) 

∇ଶ𝑨 = 0                        in Region II and III              (2b) 

∇ଶ𝑨 = −𝜇଴ 𝑱                in Region  V                           (2c) 

The remanent magnetization vector of PMs can be expressed by 

𝑴𝒓 = 𝑀𝑟௫  𝒖𝒙 + 𝑀𝑟௬  𝒖𝒚                            (3) 

where 𝑀𝑟௫ and 𝑀𝑟௬  are respectively the x- and y-component of 
𝑴𝒓. 

The field vectors 𝑩 = ൛𝐵௫; 𝐵௬; 0ൟ and 𝑯 = ൛𝐻௫; 𝐻௬; 0ൟ are 
coupled by the magnetic material equation 

𝑩 = 𝜇௠ 𝑯 + 𝜇௢ 𝑴𝒓     in Region I and IV        (4) 

𝑩 = 𝜇଴ 𝑯                        in other regions           (5) 

Using 𝑩 = ∇ × 𝑨, the components of 𝑩 can be deduced by 

𝐵௫ =
𝜕𝐴௭

𝜕𝑦
      &      𝐵௬ = −

𝜕𝐴௭

𝜕𝑥
                      (6) 

In Cartesian coordinates (𝑥, 𝑦), Equation (2) in terms of 𝑨 =
{0; 0; 𝐴௭} can be rewritten as 

 in Region I and IV (i.e., Poisson’s equation): 

𝜕ଶ𝐴௭
ூ,ூ௏

𝜕𝑥ଶ
+

𝜕ଶ𝐴௭
ூ,ூ௏

𝜕𝑦ଶ
= −𝜇௢ ∙ ቆ

𝜕𝑀𝑟௬

𝜕𝑥
−

𝜕𝑀𝑟௫

𝜕𝑦
ቇ          (7) 

 in Region II and III (i.e., Laplace’s equation): 

𝜕ଶ𝐴௭
ூூ,ூூூ

𝜕𝑥ଶ
+

𝜕ଶ𝐴௭
ூூ,ூூூ

𝜕𝑦ଶ
= 0                             (8) 

 in Region V (i.e., Poisson’s equation): 

𝜕ଶ𝐴௭
௏

𝜕𝑥ଶ
+

𝜕ଶ𝐴௭
௏

𝜕𝑦ଶ
= −𝜇଴ ∙ 𝐽௭                            (9) 

In order to obtain the solution of Laplace’s and Poisson 

Symbol Parameter (unit) Value 

𝐵௥௠ Remanent of flux density of PMs (T) 1.25 
- Magnetization type Radial 
𝑄 Number of stator slots per pole 3 
𝑦ଵ Inner magnet height (mm) 7 
𝑦ଶ Outer magnet height (mm) 12 
𝑦ଷ  Inner slot height (mm) 12.5 
𝑦ସ Outer slot height (mm) 27.5 
𝑦ହ  Outer magnet height (mm) 28 
𝑦଺ Inner magnet height (mm) 33 
𝑦଻ Outer yoke height (mm) 40 
𝛽 PM pole-width to pole-pitch ratio 100% 
𝑤 Slot opening width (mm) 12 
𝜏௣ Pole pitch (mm) 60 

𝐽௠ Armature current density (A/m2) 15·106 

𝐿 Axial length (mm) 50 
𝑛ℎ Harmonics number 140 
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equations in different regions, the PDEs (7) ~ (9) can be solved 
by using the separation of variables method and the Dubas’ 
superposition technique [27]. All regions of the proposed 
machine are described by Fourier series expression in both 
directions (i.e., x- and y-edges). Hence, the general solution of 
𝐴௭, in SDs is the superposition of two components in x- and y-
directions [26]-[27]: 

 in Region I and IV: 

𝐴௭
ூ,ூ௏ = ෍ ቆ

𝐶ଷ௡
ூ,ூ௏ ∙ 𝑒௄೙௬ +

𝐶ସ௡
ூ,ூ௏ ∙ 𝑒ି௄೙௬ + 𝛤௦

ቇ ∙ sin(𝐾௡𝑥)

௡

 

+ ෍ ቆ
𝐶ହ௡

ூ,ூ௏ ∙ 𝑒௄೙௬ +

𝐶଺௡
ூ,ூ௏ ∙ 𝑒ି௄೙௬ + 𝛤௖

ቇ ∙ cos(𝐾௡𝑥)

௡

  (10a) 

where 

𝐾௡ =
𝜋𝑛

𝜏௣

,    𝛤௦ = −𝜇௢ ∙
𝑀𝑟௬௖௡

𝐾௡

,    𝛤௖ = 𝜇௢ ∙
𝑀𝑟௬௦௡

𝐾௡

    (10b) 

𝜏௣ is the pole pitch. 

 in Region II and III: 

𝐴௭
ூூ,ூூூ = ෍ ቆ

𝐶ଷ௡
ூூ,ூூூ ∙ 𝑒௄೙௬ +

𝐶ସ௡
ூூ,ூூூ ∙ 𝑒ି௄೙௬

ቇ ∙ sin(𝐾௡𝑥)

௡

 

+ ෍ ቆ
𝐶ହ௡

ூூ,ூூூ ∙ 𝑒௄೙௬ +

𝐶଺௡
ூூ,ூூூ ∙ 𝑒ି௄೙௬

ቇ ∙ cos(𝐾௡𝑥)

௡

  (11) 

 in Region V: 

𝐴௭௦
௏ =

𝐶௦ଵ
௏ + 𝐶௦ଶ

௏ ∙ 𝑦 −
1

2
∙ 𝜇௢ ∙ 𝐽௭௦ ∙ 𝑦ଶ +

෍ 𝐺௦௠
௏௫ ∙ cos ቂ𝛽௠

௏ ∙ ቀ𝑥 − 𝛼௦ +
𝑤

2
ቁቃ +

௠

෍ 𝐺௦௩
௏௬

∙ sin[𝜆௩
௏ ∙ (𝑦 − 𝑦ଷ)]

௩

   (12a) 

𝐺௦௠
௏௫ = 𝐶௦ଷ௠

௏ ∙ 𝑒ఉ೘
ೇ ௬ + 𝐶௦ସ௠

௏ ∙ 𝑒ିఉ೘
ೇ ௬             (12b) 

𝐺௦௩
௏௬

=
𝐶௦ହ௩

௏ ∙ sinh ቂ𝜆௩
௏ ∙ ቀ𝑥 − 𝛼௦ +

𝑤

2
ቁቃ +

𝐶௦଺௩
௏ ∙ sinh ቂ𝜆௩

௏ ∙ ቀ𝑥 − 𝛼௦ −
w

2
ቁቃ 

        (12c) 

with  

𝐽௭௦ = 𝐽௠ ∙ [1  1  0  − 1  − 1  0  1  1  0  − 1  − 1  0]     (13) 

where 𝐽௠ is the current density peak, 𝑤 is the slot-opening, 𝛼௦ 
is the position of sth slot, 𝑚 and 𝑣 are the spatial harmonic 
orders, 𝛽௠

௏  and 𝜆௩
௏  are the spatial frequency (or periodicity) in 

both directions defined by: 

𝛽௠
௏ =

𝑚𝜋

𝑤
      &      𝜆௩

௏ =
𝑣𝜋

yସ − yଷ

                  (14) 

 

C. 2-D FDM 

In Region VI, the solution of magnetic vector potential 
distribution can be achieved from numerical Maxwell’s 
equations. According to Fig. 2, the grill nodes located in the 
ferromagnetic region is obtained with a uniform mesh. The 
magnetic flux can be written as: 

 

 

 
Fig. 2:  Uniform mesh of the Region VI discretized into several nodes 
 

∆ଶ𝐴௭
௏ூ

∆𝑥ଶ
+

∆ଶ𝐴௭
௏ூ

∆𝑦ଶ
= 0                                 (15) 

Equation (6) should be rewritten using numerical 
differentiation defined as the limit of a difference quotient as: 

𝐵௫(𝑥) = lim
∆௬→଴

൬
∆𝐴

∆𝑦
൰    &   𝐵௬(𝑦) = lim

∆௫→଴
൬−

∆𝐴

∆𝑥
൰    (16) 

The difference quotient 𝐵௫(𝑥) and 𝐵௬(𝑦) is a derivative 
approximation. This improves as ∆𝑥 and ∆𝑦 become smaller. 
∆𝑥 and ∆𝑦 are the spacing between two adjacent nodes in the 
𝑥- and 𝑦-direction, respectively 

∆𝑥 = 𝑥௦,௝ାଵ − 𝑥௦,௝                              (17a) 

∆𝑦 = 𝑦ଷ,௜ାଵ − 𝑦ଷ,௜                              (17b) 

According to Equation (15) and Fig. 2, each term of the PDE at 
the particular node is replaced by a finite-difference 
approximation. The distribution of 𝐴௭ in the Region VI can be 
rewritten as: 

𝐴௭௦,௜,௝ାଵ
௏ூ − 2𝐴௭௦,௜,௝

௏ூ + 𝐴௭௦,௜,௝ିଵ
௏ூ

∆𝑥ଶ
+ 

+
𝐴௭௦,௜ାଵ,௝

௏ூ − 2𝐴௭௦,௜,௝
௏ூ + 𝐴௭௦,௜ିଵ,௝

௏ூ

∆𝑦ଶ
= 0    (18) 

IV. BOUNDARY AND INTERFACE CONDITIONS 

The special feature of this paper is to establish a direct coupling 
between the two models, especially between regions that do not 
have the same relative permeability, such as the Region VI and 
its adjacent regions (namely, II, III and V). For simplicity and 
to limit the mathematical efforts, the Region VII and VIII are 
not introduced in the system to be solved. The relative 
permeability of these regions is supposed  
to be equal to infinity. It is easy to add these regions in the 
HAM. For this case and, 

 At 𝑦 = 𝑦ଷ and for the index s = 1, ⋯ , 𝑄: 

𝐴௭௦,ଵ,௝
௏ூ  =

1

∆𝑥
න 𝐴௭

ூூ(𝑥, 𝑦)𝑑𝑥
௫ೞ,ೕశభ

௫ೞ,ೕ

                  (19) 

൫𝐴௭௦
௏ (𝑥, 𝑦) = 𝐴௭

ூூ(𝑥, 𝑦)൯ห
ఈೞି

௪
ଶ

ஸ௫ஸఈೞା
௪
ଶ               (20) 

𝐻௫
ூூ(𝑥, 𝑦) = ෍ ൭

𝐻௫௦
௏ (𝑥, 𝑦)|ఈೞି

௪
ଶ

ஸ௫ஸఈೞା
௪
ଶ

+𝐻௫௦
௏ூ(𝑥, 𝑦)|ఈೞା

௪
ଶ

ஸ௫ஸఈೞశభି
௪
ଶ

൱

௦

    (21) 
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In order to satisfy Equation (21), the magnetic flux intensity 
𝐻௫௦

௏ூ(𝑥, 𝑦) by applying Equation (16) should be written as: 

𝐻௫௦
௏ூ(𝑥, 𝑦) =

1

𝜇଴𝜇௥

෍ ቆ
𝐴௦,ଶ,௝

௏ூ − 𝐴௦,ଵ,௝
௏ூ

∆𝑦
ቇ 𝑓௩

ே௖ିଵ

௝ୀଶ

       (22a) 

𝑓௩ = ෍[ℎ௫௦௩
௏ூ sin(𝐾௡𝑥) + ℎ௫௖௩

௏ூ cos(𝐾௡𝑥)]

௩

       (22b) 

where ℎ௫௦௩
௏ூ  & ℎ௫௖௩

௏ூ  are the Fourier’s constants, and 𝑁𝑐 is the 
number of grid nodes in the 𝑥-direction. 

 At 𝑦 = 𝑦ସ and for the index s = 1, ⋯ , 𝑄: 

𝐴௭௦,ே௅,௝
௏ூ =

1

∆𝑥 
න 𝐴௭

ூூூ(𝑥, 𝑦)𝑑𝑥
௫ೞ,ೕశభ

௫ೞ,ೕ

                (23) 

൫𝐴௭௦
௏ (𝑥, 𝑦) = 𝐴௭

ூூூ(𝑥, 𝑦)൯ห
ఈೞି

௪
ଶ

ஸ௫ஸఈೞା
௪
ଶ               (24) 

𝐻௫
ூூூ(𝑥, 𝑦) = ෍ ൭

𝐻௫௦
௏ (𝑥, 𝑦)|ఈೞି

௪
ଶ

ஸ௫ஸఈೞା
௪
ଶ

+𝐻௫௦
௏ூ(𝑥, 𝑦)|ఈೞା

௪
ଶ

ஸ௫ஸఈೞశభି
௪
ଶ

൱

௦

    (25) 

In order to satisfy Equation (25), the magnetic flux intensity 
𝐻௫௦

௏ூ(𝑥, 𝑦) by applying Equation (16) should be written as: 

𝐻௫௦
௏ூ(𝑥, 𝑦) =

1

𝜇଴𝜇௥

෍ ቆ
𝐴௦,ே௟,௝

௏ூ − 𝐴௦,ே௟ିଵ,௝
௏ூ

∆𝑦
ቇ 𝑓௩

ே௖ିଵ

௝ୀଶ

     (26) 

On the 𝑦-direction, viz., on the edges of the Region V and VI  
and for the index s = 1, ⋯ , 𝑄: 

 for 𝑥 = 𝛼௦ + 𝑤 2⁄ : 

𝐴௭௦,௜,ଵ
௏ூ =

1

∆𝑦
න 𝐴௭௦

௏ (𝑥, 𝑦)𝑑𝑦
௬య,೔శభ

௬య,೔

                  (27) 

𝐻௬௦
௏ூ(𝑥, 𝑦) = 𝐻௬௦

௏ (𝑥, 𝑦)                            (28) 

where 

𝐻௬௦
௏ூ(𝑥, 𝑦) =

1

𝜇௥𝜇଴

෍ ෍ ቆ−
𝐴௭௦,௜,ଶ

௏ூ − 𝐴௭௦,௜,ଵ
௏ூ

∆𝑥
ቇ

௩

ே௟ିଵ

௜ୀଶ

 

∙ ℎ௬௦௩
௏ூ sin[𝜆 ∙ (𝑦 − 𝑦ଶ)]   (29) 

where 𝑁𝑙 is the number of grid nodes in the 𝑦-direction and 
ℎ௬௦௩

௏ூ  is the Fourier’s constants. 

For the index 𝑠 = 2, ⋯ , 𝑄 and, 

 for 𝑥 = 𝛼௦ − 𝑤 2⁄ : 

𝐴௭௦,௜,ே௖
௏ூ =

1

∆𝑦
න 𝐴௭(௦ିଵ)

௏ (𝑥, 𝑦)𝑑𝑦
௬య,೔శభ

௬య,೔

             (30) 

𝐻௥௦
௏ூ(𝑥, 𝑦) = 𝐻௥(௦ିଵ)

௏ (𝑥, 𝑦)                        (31) 

where 

𝐻௬௦
௏ூ(𝑥, 𝑦) =

1

𝜇௥𝜇଴

෍ ෍ ቆ−
𝐴௭௦,௜,ே௖

௏ூ − 𝐴௭௦,௜,ே௖ିଵ
௏ூ

∆𝑥
ቇ

௩

ே௟ିଵ

௜ୀଶ

 

∙ ℎ௬௦௩
௏ூ sin[𝜆 ∙ (𝑦 − 𝑦ଶ)]   (32) 

Anti-periodic BCs are applied and given as: 

𝐴௭ொ௦,௜,ே௖
௏ூ = −

1

∆𝑦
න 𝐴௭ଵ

௏ (𝑥, 𝑦)𝑑𝑦
௬య,೔శభ

௬య,೔

              (33) 

𝐻௫ொ௦
௏ூ (𝑥, 𝑦) = −𝐻௫ଵ

௏ (𝑥, 𝑦)                         (34) 

V. COMPARISON OF HAM AND NUMERICAL CALCULATIONS 

About the FEA, FEMM designer was used, and the analytical 
calculations were computed by MATLAB. The number of nodes 
and elements are 84,019 and 167,089, respectively. These results 
have been calculated under an acceptable amount of 
discretization of the Region VI (viz., 𝑁𝑐 = 25 and 𝑁𝑙 = 15). 

Figs. 3 ~ 4 shown a comparison of the air-gap flux density 
distribution with a radial magnetization pattern and for the open-
circuit calculated by HAM and FEA with different values of iron 
core relative permeability (viz., 𝜇௥ = 2 and 1,000) under 
geometrical and physical parameters given in Table I. 

Figs. 5 ~ 6 shown the air-gap magnetic flux density distribution 
for the armature reaction. The maximal current density is equal 
to 𝐽௠ [see Table I]. 

Excellent agreement is achieved between HAM and FEM. 

 
 
 

        
 
Fig. 3:  Comparison of HAM and FEA predicted for the open-circuit magnetic flux density distribution with a radial magnetization pattern in the middle of the 
Region II for 𝜇௥ = 1,000 in all ferromagnetic regions. 
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Fig. 4:  Comparison of HAM and FEA predicted for the open-circuit magnetic flux density distribution with a radial magnetization pattern in the middle of the 
Region II for 𝜇௥ = 2 in all ferromagnetic regions. 
 

        
Fig. 5:  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of the Region II for 𝜇௥ = 1,000 in all ferromagnetic 
regions. 
 

           
Fig. 6:  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of the Region II for 𝜇௥ = 2 in all ferromagnetic 
regions. 
 

TABLE II. 
2-D COMPUTATIONAL TIME FOR VARIOUS METHODS 

Method 
HAM FEA 

𝑛ℎ = 140 
𝑁𝑐 = 25, 𝑁𝑙 = 15 

Two poles 
84,019 nodes 

Time (sec) ~3 ~7.5 

Figs. 7 ~ 10 show the magnetic flux density distribution in all 
parts of an electrical machine calculated by HAM and 
compared to FEA with different values of iron core relative 
permeability (viz., 𝜇௥ = 2 and 1,000) as well as the error level 
calculated by 

‖𝑩𝒆𝒓𝒓𝒐𝒓‖ =
| ‖𝑩𝐅𝐄𝐀‖ − ‖𝑩𝐇𝐀𝐌‖ |

mean(‖𝑩𝐅𝐄𝐀‖)
× 100%         (35) 

Each SDs of the proposed machine is divided into 50 levels in 
the y-direction and each level is composed to 1,200 points in 
the x-direction. We can observe that the errors can be localized 
in the interface between two adjacent regions or in the edges of 
PMs and that because of the fluctuations due to limiting number 
of Fourier series harmonics. 

Table II shown the computation time for the magnetic flux 
density calculation by HAM and FEA. 

VI. CONCLUSION 

This paper presents a new HAM based on an accurate SD model 
and FDM for the flat PM linear synchronous machine with 
rotor-dual having a radial magnetization and a single-layer 
concentrated winding. The proposed approach is modeled in 2-
D Cartesian coordinates using Maxwell’s equations. The 
coupling between the two models is performed especially in the 
interface when two adjacent regions have not the same 
magnetic parameters (e.g., in the interface between teeth 
regions and all its adjacent regions). It was performed in both 
directions (x- and y-edges) in order to gives accurate results, 
especially in case of saturation effect. 

The HAM was used to predict the magnetic flux density 
components whatever the loading conditions (i.e., the open-
circuit and the armature reaction) and the iron core relative 
permeability. The comparison with 2-D FEA demonstrates 
excellent results of the developed approach. The computational 
time is ≈ 2 times smaller than FEA. 

The high impact contributions of this approach can now focus 
our attention on the optimization of the machine performances, 
in particular with the local saturation effect through elementary 
SD technique [28] by inserting the B(H) curve which will be 
proposed in a future contribution. 



 
                                          a)                                                                                   b)                                                                                 c) 

Fig. 7:  a) ‖𝑩𝒆𝒓𝒓𝒐𝒓‖(%) distribution calculated by the difference between b) HAM and c) FEA under no-load condition for 𝜇௥ = 1,000.  

 

                                          a)                                                                                   b)                                                                                 c) 

Fig. 8:  a) ‖𝑩𝒆𝒓𝒓𝒐𝒓‖(%) distribution calculated by the difference between b) HAM and c) FEA under no-load condition for 𝜇௥ = 2.  
 

 

                                          a)                                                                                   b)                                                                                 c) 

Fig. 9:  a) ‖𝑩𝒆𝒓𝒓𝒐𝒓‖(%) distribution calculated by the difference between b) HAM and c) FEA under armature reaction condition for 𝜇௥ = 1,000.  
 

  

                                          a)                                                                                   b)                                                                                 c) 

Fig. 10:  a) ‖𝑩𝒆𝒓𝒓𝒐𝒓‖(%) distribution calculated by the difference between b) HAM and c) FEA under armature reaction condition for 𝜇௥ = 2.  
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