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Analysis and mapping of mining subsidence and 
underground voids collapse risk using GIS and the 

weights-of-evidence model for the abandoned 
Ichmoul mine, Algeria 

Nassim Larachi, Abderrahim Bali, Abderrezak Ait Yahiatene and Malek Ould Hamou 

Abstract− The present study concerns the assessment of mining subsidence and old underground works collapse hazard 
of the abandoned Ichmoul mine (Batna, Algeria) using the geographic information system (GIS) and the weight of 
evidence method (WofE). After the identification of collapse cases on the site and developing a spatial database for old 
underground works, topography and geology, the weight of evidence model was applied to calculate the weight of each 
relevant factor. Five main factors controlling or related to subsidence and underground voids collapse were determined 
from the probability analysis of existing cases; the underground voids depth, the distance between the underground voids, 
the landforms slope, the lithology and the distance between the fractures. Conditional independence tests were performed 
for the choice of factors. For the analysis of the subsidence and underground void collapse spatial hazard mapping, the 
contrast values, W+ and W- of the each factor evaluation were analyzed. The analysis results were validated using the 
curve ROC (AUC) with a past collapse case. For all the factors used, the area under the (ROC) curve showed 92 % 
accuracy. The results obtained can be used for the prevention of mining subsidence and underground voids collapse risks 
and the mine site rehabilitation.  
 

Keywords−Abandoned mine, Algeria, geographic information system, hazard prediction map, subsidence and collapse 
hazard, weight of evidence. 

 

I. INTRODUCTION 

Abandoned mines are threatened by the ground subsidence and 
voids collapse risk around old mining works (galleries, pipes, 
declines, shafts, etc.). This risk with negative environmental 
impact [1-7] is only a spatio-temporal evolution of the voids 
physical instability that was once created by the underground 
exploitation of deposits. Therefore, managing the mining 
subsidence and voids collapse risk of abandoned mine is urgent 
and imminent, in order to reduce the impact and so that 
governments can prevent this risk. So, a systematic prediction 
of subsidence and voids collapse can be used for sustainable 
development and future management of the post-mine 
environment. Although the GIS (geographic information 
system) has been widely used for geo-risks such as landslides 
[8-11], floods [12, 13],  land subsidence by overexploitation 
groundwater [14], groundwater vulnerability to pollution [15-
18], soil erosion [19-21], soil pollution [22]... etc. and even in 
the mineral resources potential assessment [23-26], few studies 
have been carried out for the assessment of GIS-based methods 
and applications relating to the environmental management of 

former mining sites [27]. In recent years, there have been 
probability, statistical, fuzzy logic and artificial neural network 
methods combined with GIS (Geographic Information System) 
software that helps predict the subsidence and collapse risk in 
the mining environment. Indeed, Kim et al., 2006; Blachwski, 
2016; Oh et al., 2011 and Lee et al., 2012 predicted the ground 
subsidence risk using GIS with models based on frequency 
ratio, logistic regression and an artificial neural network [28-
31], Choi et al., 2010 and Park et al., 2012 predicted this risk 
for an abandoned underground coal mine out of fuzzy logic 
[32,33]. Oh and Lee, 2011; 2010 also applied the weights of 
evidence (WofE) method to predict subsidence in an abandoned 
coal mine [34, 35]. Algeria has old mines, dispersed throughout 
the country. The various geological risks of old mines, 
including mine drainage, ground subsidence and voids collapse, 
contamination, etc. are important in these mines [36]. Very little 
attention has been paid to the subsidence and collapse risk at 
these mine sites. Therefore, the Algerian government must 
initiate research programs on former mining sites in order to 
carry out data mining for post-mine management. During the 
sampling campaigns of the mine wastes and geo-mining study 
on the abandoned Ichmoul mine allowed to identify and 

observe subsidence and collapse cases around the old 
galleries (Fig.1). So, a prediction method combined with 
MapInf software to assess and predict mine subsidence and 
collapse is applicable. The objective of this study is to analyze 
and map the land subsidence and underground collapse risk 
of around the old galleries of the abandoned Ichmoul mine 
using the weights-of-evidence method and GIS. 

II. METHODOLOGY 

The analysis of the mining subsidence and voids collapse risk 
of mine sites with underground exploitation requires several 
steps [30, 32, 33, 35]. The first step involves the collection of 
mining (mining plans), geological (lithology, faults), 
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hydrogeological, topographic (landform slopes) data as well as 
an inventory of subsidence and collapse cases on the site. These 
data will allow selection of the relevant factors. The second step 
is to assess the spatial hazard using the relationship between 
this risk and factors related. The third step is to make a risk map 
of subsidence and underground voids collapses from the factor 
maps. Finally, the results validation step. Ground subsidence 
and voids collapse in mine sites are processes of rock mass 
movement under the influence of various factors. Therefore, it 
is essential to analyze the conditions of the selected factors to 
assess this risk. In the literature, the main influencing factors 
responsible for mining subsidence and voids collapse are the 
depth and height of underground voids, mining method, degree 
of voids inclination, mining extent, structural geology, 
lithology, landforms slope and groundwater [33, 35].In 
addition, two campaigns carried out on the mine site detected 
mining subsidence and voids collapse cases (Fig.2), some were 
used for modeling and others for validation. 
 

 
Fig. 2: Collapse cases of galleries in the Ichmoul mine site. 

 
A total of 5 cases mapped through field observations. Of the 
total, a case was mapped to ore masse 3 that caused a land 
subsidence. A large number of ground breaking phenomena 
have been observed at high altitudes. It was found that these 
collapses mainly occurred on the access galleries openings. The 
escalating feature of collapses has proven to be a major risk for 
artisanal miners. The study area belongs to the terrain 
comprising a variety of different dimensions faults. The main 
one is the tectonic fault located in the ore masse 2 and 4. 

The approach to predicting mining subsidence and collapses 
around voids generated by old mining is based on the spatial 
correlation of factors and risk. To generate the risk prediction 
maps for each of the five study factors using WofE , the spatial 
database was classified into a map by calculating W + and W− 
from “(1)” and “(2)” [10, 35], which show favorable and 
unfavorable areas. 
 

 𝑊ା = 𝐿𝑜𝑔
𝑃{𝐵/𝐷}

𝑃{𝐵 𝐷ഥ⁄ }
 (1) 

 
𝑊ି = 𝐿𝑜𝑔

𝑃{𝐵ത/𝐷}

𝑃{𝐵ത/𝐷ഥ}
 

(2) 

where P is the probability, B is the presence of a dichotomous 
pattern,  
𝐵ത  is the absence of a dichotomous pattern, D is the presence of 
an event occurrence, and 𝐷ഥ is the absence of an event 
occurrence. W+ and W− are the weights of proof when a factor 
is present (relevant) and absent (irrelevant), respectively. 

 
A pair of weights, W+ and W-, is determined by the degree of 
overlap between known mining subsidence and collapses and 
the various classes of factors [11, 34]. If no particular 
association exists between the collapse occurrences and the 
factor, then W+ = W- = 0. A positive value of W + indicates a 
positive association between known cases and the obvious map. 
The contrast value C (where C = [W+] - [W-]) represents the 
degree spatial association between the obvious map and known 
occurrences [11]. The weights significance (S) can be estimated 
by “(3, 4)” below [10, 11]: 
 

 sଶ (𝑊ା) = [1/𝑀{𝐵 ∩ 𝐷}] + [1/𝑀{𝐵 ∩ 𝐷ഥ}] (3) 

 sଶ (𝑊ି) = [1/𝑀{𝐵ത ∩ 𝐷}] + [1/𝑀{𝐵ത ∩ 𝐷ഥ}] (4) 
 
Finally, to calculate the standard deviation and the studentized 
(c/s) of the contrast, “(5)”and “(6)” were used [35, 11, 14]. 
 

 S(C) =  ඥsଶ(Wା) + sଶ (Wି) (5) 

 

 
Fig. 1: Old mining galleries and underground collapse location of the abandoned Ichmoul mine site. 
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 c s = ቀC
S(C)ൗ ቁൗ  (6) 

 

III. RESULTS AND DISCUSSION 

These past cases of subsidence and voids collapse will help 
select the relevant factors related to risk. They ensure also that 
the predicted subsidence and voids collapse will occur under 
conditions identical to those of the past cases [32].  
On the other hand, a laborious work made it possible to develop 
geographic information system (GIS) using professional 

MapInfo software while digitizing and calibrating the various 
maps (paper format) recovered from the National Mining 
Company of Products Non Ferrous and useful substances 
(ENOF). This GIS database is made up of the contour lines 
altitudes generated from a topographic map, lithological 

information and the faults from the geological map, distances 
between the old underground voids from the old galleries maps 
and the old voids depths from geological sections. The thematic 
data layers are shown in Table I and Figs. 3-7. 
Previous studies of ground subsidence in old mine sites have 
mentioned that void depth factors and the distances between 
them are important [28, 30, 33], therefore very tight classes 
were chosen. However, the hydrogeology factor has been 
eliminated because the Ichmoul mine is above groundwater 
[37]. The section factors of underground voids and mining 
method were also eliminated because during the study 
campaigns on the site, it was observed that the underground 
voids have small cross-section and the mining is not well 
developed.  

The slope was classified into 10 categories after eliminating 
certain elevations. Since the distance between fractures factor 
is relevant, then fractures were included.  
The lithology factor has been classified into 6 categories.  
Then, using the weight-of-evidence method, the spatial 
relationships between the location of the detected underground 
voids collapse and each of the underground voids collapse 
related factors, such as slope, faults, depth of voids, distance 
between voids, the depth of voids were analyzed (Table II). 
Spatial relationships were used as a rating for each factor in the 
overlay analysis. Subsequently, conditional independence tests 
were carried out for the selection of factors to be used in the 

mapping of spatial subsidence and collapse hazard [35].  
 

 
Fig. 4: Class map of the lithology factor of the Ichmoul mine site. 

 

 
Fig. 3: Class map of the landform slope factor of the Ichmoul mine site. 

 

Table. I 
CONSTRUCTION OF A GIS DATABASE INCLUDING FACTORS RELATED TO THE 

MINING SUBSIDENCE AND UNDERGROUND VOIDS COLLAPSE OF THE 

ABANDONED ICHMOUL MINE. 

Category Factors Scale 

Geology map Distance between fractures 
Lithology 

 
1/2000 

Topographic map Slope 1/2000 
Galleries maps Distance between underground voids 1/2000 

and 1/500 
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The factors were added to calculate a spatial risk index of 
subsidence and underground voids collapse hazard was mapped 
for 5 factors combinations such as a combination using all 

variables and 4 others different combinations (without depth of 
voids, without distance between fracture, without slope, 
without distance of underground voids). Then, 5 posterior 
probability maps were generated (Figs.8 and 9). Finally, the 
results of combining all the factors were validated using the 
receiver operating characteristic curve (ROC) with previous 
underground voids collapse cases [30, 35]. 

 
The WofE application in this study, the MI-SDM extension of 
MapInfo 8 professional software was used. The plugin has 
several tools to calculate the posterior probability map with a 
tool that calculates W+, W− and the posterior probability map, 

etc., in one step. The 5 factor maps were submitted to the large 
WofE tool of the MI-SDM, which resulted in a large table 
(Table II) containing W+, W−, C, S2 (W+), S2 (W−),S2 (C) and 

C/S (C) information of each the factor classes using “(1-6)”.It 
also resulted in a posterior probability map containing the 
probability information (in a range of 0 to 1) of the void 
collapse occurrence, cell by cell. Positive C values are observed 
in the five selected factors, steep slope category (30 -50), 
lithology (limestone, dolomite and shale), shallow depth (0–20 
m), distance between fractures (0-20,80-90m) and short 

distance between voids (0–20m).This indicates that these 
categories of factors influence the subsidence and underground 
voids collapse prediction at the former Ichmoul mine. 

 
Fig. 5: Class map of distance between underground voids factor of the Ichmoul mine site. 

 
 

 
Fig.6: Class map of the underground voids depth factor of the Ichmoul mine site. 

 
Fig. 7: Class map of the distance between fractures factor of the Ichmoul mine site. 
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A. Mapping of the subsidence and underground voids 
collapse risk of Ichmoul mine 

As mentioned in the previous section, the posterior probabilities 
should not be considered in absolute terms, but as a relative 
term of subsidence and underground voids collapse 
favorability, which can be represented by the relative map of 
this instead of using the true posterior probability values. MI-
SDM's WofE generates a continuous raster, which represents 
the void collapse probability on a continuous scale from 0 
(minimum) to 1 (maximum). In the present study, a minimum 
probability value of 0.0001 and a maximum of 0.4660 were 
observed (Fig. 8). 
In addition, 4 other combinations of factors were studied and 
the posterior probability maps were generated (Fig.9).Each map  
 
 
 
 

shows different probability values, indicating the effect of each  
factor on the prediction of the subsidence and underground 
voids collapse risk in the mine site. Indeed, combination 1 
(without depth of voids) and combination 2 (without distance 
between fractures), show low posterior probability values 
compared to the other combinations, which suggests that they 
are the main risk factors for subsidence and underground voids 
collapse in the Ichmoul mining site. 

B. Conditional independence test (CI) 

Conditional independence was tested before integrating 
predictor maps to map the spatial hazard of subsidence and 
underground voids collapse. All pairs of factors selected for 
prediction were tested, and a chi-square table X2 to test 
conditional independence is shown in Table III. 

Table. II 
 ANALYSIS OF WEIGHTS OF EVIDENCE BETWEEN MINING SUBSIDENCE AND UNDERGROUND VOIDS COLLAPSE AND RELATED FACTORS 

 

   Factor       Class 
Area 
(km2) 

point 
   W+ S(W+)        W- S(W-)  Contrast   S(C)   Stud (C)  

Landform 
slope (%) 

0-10 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 
missing 

35 
177 
452 
158 
27 
0 
0 
0 
0 
144 

0 
10 
132 
98 
10 
0 
0 
0 
0 
-75 

- 
-1.930 
-0.0001 
1.3760 
0.3548 
- 
- 
- 
- 
- 

- 
0.3256 
0.1034 
0.1639 
0.3985 
- 
- 
- 
- 
- 

- 
0.2816 
0.0001 
-0.3933 
-0.0124 
- 
- 
- 
- 
- 

- 
0.0803 
0.1094 
0.0917 
0.0766 
- 
- 
- 
- 
- 

- 
-2.2115 
-0 .0002 
1.7694 
0.3672 
- 
- 
- 
- 
- 

- 
0.3553 
0.1506 
0.1878 
0.4058 
- 
- 
- 
- 
- 

- 
-6.5955 
-0.0014 
9.4199 
0.9047 
- 
- 
- 
- 
- 

     
 
 
 
    lithology 

Marl 
Schist 
Limestone 
Dolomite 
Sandstone 
Quaternary 
Missing  

17 
58 
283 
279 
155 
48 
157 

0 
21 
138 
28 
0 
0 
0 

- 
0.6887 
1.2056 
-0.9382 
- 
- 
- 

- 
0.27332 
0.1189 
0.1992 
- 
- 
- 

- 
-0.0611 
-1.0895 
0.3201 
- 
- 
- 

- 
0.0874 
0.1495 
0.0936 
- 
- 
- 

- 
0.7497 
2.2951 
-1.2583 
- 
- 
- 

- 
0.2869 
0.1911 
0.2201 
- 
- 
- 

- 
2.6126 
12.0116 
-5.7160 
- 
- 
- 

        
Underground 
voids depth 
(m) 

0-10 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 
90-100 
100-110 
110-120 
120-130 
140-150 
150-160 

11 
13 
12 
12 
12 
8 
6 
8 
6 
5 
7 
2 
3 
1 
1 

6 
4 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

23224 
13291 
-0.2578 
- 
-0.2578 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.6055 
0.6009 
1.0445 
- 
1.0445 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

-0.6429 
-0.3131 
0.0271 
- 
0.0271 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.4207 
0.3684 
0.3192 
- 
0.3192 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

2.9653 
1.6422 
-0.2849 
- 
-0.2849 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.7373 
0.7049 
1.0922 
- 
1.0922 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

4.0217 
2.3298 
-0.2609 
- 
-0.2609 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
 
 
 
  Distances 
  between 
underground 
   voids (m) 

0-10 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 
90-100 
missing 

75 
44 
38 
34 
33 
33 
31 
31 
34 
25 
1619 

12 
2 
0 
0 
0 
0 
0 
0 
0 
0 
-1 

1.6081 
0.2218 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.3150 
0.7237 
- 
- 
- 
- 
- 
- 
- 
- 
- 

-1.7576 
-0.0326 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.7094 
0.2940 
- 
- 
- 
- 
- 
- 
- 
- 
- 

3.3657 
0.2544 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.7762 
0.7812 
- 
- 
- 
- 
- 
- 
- 
- 
- 

4.3360 
0.3257 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
 
Distances 
Between 
Fractures (m) 

0-10 
10-20 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 
90-100 
missing 

60 
60 
56 
56 
53 
49 
47 
47 
47 
41 
1480 

5 
3 
0 
0 
2 
1 
1 
1 
3 
0 
-3 

1.0521 
0.5055 
- 
- 
0.2113 
-0.4212 
-0.3787 
-0.3787 
0.7644 
 

0.4671 
0.5923 
- 
- 
0.7208 
1.0104 
1.0108 
1.0108 
0.5967 

-0.2591 
-0.0876 
- 
- 
-0.0268 
0.0355 
0.0312 
0.0312 
-0.1163 

0.3052 
0.2814 
- 
- 
0.2714 
0.2624 
0.2624 
0.2624 
0.2812 
 

1.3112 
0.5932 
- 
- 
0.2382 
-0.4568 
-0.4098 
-0.4098 
0.8807 

O.5580 
0.6558 
- 
- 
0.7702 
1.0439 
1.0443 
1.0443 
0.6597 

0.3501 
0.9045 
- 
- 
0.3092 
-0.4376 
-0.3924 
-0.3924 
1.3351 
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The theoretical X2 value of 6.63 to test conditional 
independence between all pairs of models for each factor was 
calculated to the significance of 95% and 1 degree of freedom. 
If the calculated X2 value is less than 4.84, the pair of prediction 
factors is independent. For example, using the possibility table 
to test the conditional independence between the slope factor 

and the lithology factor is presented in Table III. It can be seen 
that these two factors show conditional independence, because 
the calculated X2 is 0.44 and which is less than theoretical X2. 
This implies that these predictors could be used together to map 
the spatial hazard of subsurface void collapse at the Ichmoul 
mine site. 

 

 
 

 
 

Fig. 9: Class Posterior probability maps for factors combinations (a) without lithology (b) without distance between fractures(c) without landforms slope (d) without 
underground voids depth 

 

 
Fig. 8: Posterior probabilities map by combining the all factors. 
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The risk map of mining subsidence and underground voids 
collapse in the Ichmoul mine site was then produced, using all 
the factors, and the risk index is shown in Fig.10.   
The index was classified into 4 classes depending on the area 
for visual and easy interpretation: high, medium, low and very 
low. 

C. Validation  

The purpose of the validation is to verify the quality and 
accuracy of the approach applied for the prediction of 
subsidence and collapse around the old underground voids of 
the abandoned Ichmoul mine. For this purpose, the generated 
risk map was validated using the ROC AUC (Area Under the 
Curve) result. This curve was obtained by comparing the rate 
of false positives (1-specificity) and the rate of true positives 
(sensitivity) of the posterior probability map [26]. This curve 
(Fig.11) was also formed using the underground voids collapse 
case risk not used for the prediction. The area of this spared 
case was divided into 30 zones, each of which is approximately 
20m2 and the posterior probability value of each was taken.  
The value of the area under the curve is 92%, which shows the 
precision and perfection of the approach applied for the 
prediction of mining subsidence and underground voids 
collapse risk of the Ichmoul mine site. 

 

IV. CONCLUSION 

 Mapping the risk of subsidence and voids collapse generated 
by mining is a fundamental tool for the environmental 
management of former mining sites. This study demonstrates 
the influence of landforms slope, underground voids depth and 

their distances, distance between fractures, and lithology 
factors on mining subsidence and underground voids collapse 
and their potential distribution in the abandoned Ichmoul 
mining site. The Subsidence and underground voids collapse 
risk map produced by the WofE method has been classified into 
four classes: very low, low, medium and high. The map 
obtained was validated according to the ROC (AUC) test, the 
precision was 92%. The results of this study can be used to map 
the subsidence and underground voids collapse risk at other 
mine sites. In addition, the risk map of subsidence and 
underground voids collapse can be used as basic data for the 
establishment of a risk prevention plan in old mining sites. 
However, to generalize mine subsidence and underground 
voids collapse factors, more studies and prediction methods 
should be performed. 
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Table. III 
CHI-SQUARE VALUES CALCULATED TO TEST THE CONDITIONAL INDEPENDENCE 

BETWEEN THE FACTORS SELECTED FOR THE ICHMOUL MINE SITE (PROBABILITY 

OF TEST RELIABILITY OF 5%) 

 

 Underground 
voids depth 

Distances 
between  
fractures 

Distances 
between 
underground 
voids  

 
lithology 

Slope

Underground 
voids depth 

— 3.329 0 1.876 1.202 

 Distances 
between fractures 

 — 0 4.179 1.977 

 Distances 
between 
underground 
voids  

  — 0 0 

 lithology    — 0.446 

 Slope     — 

 

 
Fig. 10: The risk prediction map of underground voids collapse in the Ichmoul mine site. 

 
 

 
Fig. 11: The ROC (AUC) curve for validation of a prediction map of the 

underground voids collapse risk in the abandoned Ichmoul mine. 
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