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Generalized Givens Rotations Applied to Complex
Joint Eigenvalue Decomposition

Ammar MESLOUB

Abstract—This paper shows the different ways of using generalized Givens rotations in complex joint eigenvalue
decomposition (JEVD) problem. It presents the different schemes of generalized Givens rotation, justifies the introduced
approximations and focuses on the process of extending an algorithm developed for real JEVD to the complex JEVD.
Several Joint Diagonalization problem use generalized Givens rotations to achieve the solution, many algorithms
developed in the real case exist in the literature and are not generalized to the complex case. Hence, we show herein a
simple and not trivial way to get the complex case from the real one. Simulation results are provided to highlight the
effectiveness and behaviour of the proposed techniques for different scenarios.

Keywords—Complex Joint EigenValue Decomposition (JEVD), Shear and SHRT, generalized Givens rotations, ex-
act JEVD, approximative JEVD.

I. INTRODUCTION

In this paper, we mainly try to expose the generalized Givens
rotation used to solve the Joint EigenValue Decomposition
(JEVD) problem of a set of complex square matrices. This
problem of JEVD can be found in different applications such as
multi-dimensional harmonic retrieval [1], Canonical Polyadic
Decomposition (CPD) of tensors [2, 3], Direction of arrival esti-
mation [4], joint angle-delay estimation [5] and Blind Sources
Separation (BSS) [6].

The aforementioned problem is widely treated in the literature
by using different schemes. The generalized Givens rotations
have been used in [7, 8], the LU decomposition is used in [9]
and first Taylor approximation is used in [10].

The JEVD is defined for K complex square matrices of dimen-
sion N ×N sharing the following structure :

Mk = ADkA−1 (1)

Where k ∈ {1, ...,K}, K is the number of matrices, N is the
matrix dimension. A is unknown square non defective matrix
(in the BSS context, this matrix is referred to as mixing matrix)
and Dk is the kth diagonal matrix associated to the kth matrix
Mk.
The last problem consists of looking for {A,D1, · · · ,DK} by
using only the set of the K complex matrices {M1, · · · ,MK}.
It can be also defined by finding a matrix V which makes the set
of matrices {VM1V−1, · · · ,VMKV−1} as diagonal as possible
specially in the approximate JEVD case (see section V. for more
details).

In this paper, we investigate generalized Givens rotations applied
to the JEVD problem. The unknown matrix A is decomposed in
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a product of generalized Givens rotations, according to:

A =
∏

#sweeps

∏
1≤i<j≤N

SijGij (2)

where #sweeps represents the number of iterations, Sij and Gij

are the elementary Shear and Givens rotations [7, 11], respec-
tively. The problem of JEVD reduces then in the estimation of
these elementary rotations.

II. GENERALIZED GIVENS ROTATION SCHEMES

The elementary rotations of equation (2) can be expressed ac-
cording to two different schemes. The first one is based on sinus
and hyperbolic sinus which needs some complicated develop-
ments leading to an efficient estimation.
This first scheme considers elementary rotations that are equal
to the identity matrix except for (i, i)th, (i, j)th, (j, i)th and
(j, j)th entries which are:[

Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
cos(θ) e−ϕ sin(θ)

−eϕ sin(θ) cos(θ)

]
(3)

[
Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
=

[
cosh(y) eα sinh(y)

e−α sinh(y) cosh(y)

]
(4)

θ is the angle parameter and ϕ is the phase parameter of consid-
ered Givens rotation. y is the shear angle and α represents the
phase parameter of the elementary Shear rotation. This scheme
is the most used one as it can be found in [7, 8, 11–14].

The second scheme allows appropriate approximations that lead
to a computationally simplified methods compared to the first
scheme.This scheme allows elementary Shear and Givens rota-
tions equal to the identity matrix except for some entries which
are given by:[

Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
= λg

[
1 g∗

−g 1

]
(5)

[
Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
= λs

[
1 s∗

s 1

]
(6)
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where g and s are complex numbers associated to Givens and
Shear parameters, respectively. g∗ is the complex conjugate of
g. λg = 1√

1+|g|2
and λg = 1√

1−|s|2
. When this scheme is

applied as in [14, 15], both g and s are considered with small
norm which simplifies λg and λs to the unity (λg = λs u 1).

III. JOINT EIGENVALUE DECOMPOSITION CRITERIA

The JEVD problem uses several criteria as shown in the litera-
ture, the difference of these criteria can be seen only in the shear
rotation. Before discussing the existing criteria, let us note M′k
the transformed matrices by the shear rotation as

M′k = Sij(y,α)MkSij(y,α) (7)

The different criteria can be discussed as

• In [12], the Shear rotation is chosen to minimize the frobe-
nius norm of transformed matrices M′h, where the index
h is chosen by the matrix having the most departure from
the normality (see [12] for more details). Then, some ap-
proximations and linearisation are introduced to simplify
the explicit expression of the optimal value of ’y’.

C1(y) =
∥∥M′h

∥∥2 (8)

This criterion C1(y) is used for real JEVD.

• In [7], the criterion of shear transformation takes into
account the frobenius norm of off diagonal matrices,
which is the frobenius norm of matrices Mk − diag(Mk),
k = 1, · · · ,K. the Shear parameter ’y’ is obtained by an
analytical solution.

C2(y, α) =

K∑
k=1

∥∥M′k − diag(M′k)
∥∥2 (9)

This criterion C2(y, α) is used in the complex case.

• In [8], the considered criterion is the sum of square
norm of the (i, j)th and (j, i)th entries of matrices Mk,
k = 1, · · · ,K. The fixed couple i and j satisfies 1 ≤ i <
j ≤ N . This criterion is a simplified version of the one
given in equation (9). However, JDTM (Joint Diagonal-
ization algorithm based on Targeting hyperbolic Matrices)
outperforms JUST (Joint Unitary Shear Transformation)
in many scenarios (see [8] for details).

C3(y) =

K∑
k=1

|m′k(i, j)|
2
+ |m′k(j, i)|

2 (10)

• In [13], the considered criterion is the sum of square norm
of difference between the (i, j)th and (j, i)th entries of
matrices Mk, k = 1, · · · ,K. This criterion is introduced
to reduce the deviation of matrices Mk from normality.
the Shear rotation is explicitly introduced to minimize the
departure from symmetry of matrices Mk. Hence, for each
elementary rotation Sij(y), the minimized criterion can be
expressed as:

C4(y) =

K∑
k=1

∑
1≤i<j≤N

|m′k(i, j)−m′k(i, j)|
2 (11)

Now, let us generalize the SHRT (SHear RoTation algorithm)
method developed in [12] to the complex case.

IV. COMPLEX SHRT METHOD

The objective of this section is to generalize the method proposed
in [12] to the complex case. Hence, only the Shear rotation is
studied where the Givens rotation is obtained by applying the
solution given in [6].
Let us study the transformed matrices by the Shear transform
given in (7), where only ith, jth rows and columns are affected
by the Shear transformation. Modified entries can be written as:

m′k(l, i) = mk(l, i) cosh(y) +mk(l, j)e
−α sinh(y)

m′k(l, j) = mk(l, i)e
α sinh(y) +mk(l, j) cosh(y)

m′k(i, l) = mk(i, l) cosh(y)−mk(j, l)e
α sinh(y)

m′k(j, l) = −mk(i, l)e
−α sinh(y) +mk(i, j) cosh(y)

(12)
and the entries twice affected by the shear rotation can be ex-
pressed as:

m′h(i, j)e
−α = mh(i, j)e

−α + ξh sinh
2(y) + dh

2 sinh(2y)

m′h(j, i)e
α = mh(j, i)e

α − ξh sinh2(y)− dh
2 sinh(2y)

m′h(i, i) = mh(i, i) + dh sinh
2(y) + ξh

2 sinh(2y)

m′h(j, j) = mh(j, j)− dh sinh2(y)− ξh
2 sinh(2y)

(13)
where {

ξh = (mk(i, j)e
−α −mk(j, i)e

α)
dh = (mk(i, i)−mk(j, j))

(14)

Note that we have introducedm′h(i, j)e
−α,m′h(j, i)e

α instead
of m′h(i, j), m

′
h(j, i) in order to simplify the other workouts.

Let us find the optimal shear parameter y and α minimizing the
square frobinus norm of matrix M′

h as given in equation (8).
We take into account only the modified entries given in (12) and
(13), then the total criterion can be expressed as

CT (y, α) = CT1(y, α) + CT2(y, α) (15)

where the first term, CT1(y, α) corresponds to the entries twice
affected given in equation (13) as

CT1(y, α) =
|m′h(i,i)+m

′
h(j,j)|

2

2 +
|m′h(i,i)−m

′
h(j,j)|

2

2

+
|m′h(i,j)e

−α+m′h(j,i)e
α|2

2

+
|m′h(i,j)e

−α−m′h(j,i)e
α|2

2
(16)

The second term CT2 contains the other terms given by

CT2(y, α) =
∑N
l=1,l 6=i,j |m′h(i, l)|2 + |m′h(j, l)|2

+|m′h(l, i)|2 + |m′h(l, j)|
(17)

Let us analyse the different parts of CT1(y, α) given equation
(16), the part |m

′
h(i,i)+m

′
h(j,j)|

2

2 is independent from the shear

parameter y and α, the part |m
′
h(i,j)e

−α+m′h(j,i)e
α|2

2 depends
only on the phase parameter α and the other parts depend
on the two parameters. Then, we have to minimize the part
|m′h(i,j)e

−α+m′h(j,i)e
α|2

2 to get optimal phase parameter. The
optimal value is

α =
1

2
[arg{mh(i, j)m

∗
h(j, i)} − π] (18)

Once this value is computed, we insert it in equation (15) in
order to get the shear rotation parameter y. After some workouts,
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the total criterion can be rearranged as

CT (y) = (|dh|2 + |ξh|2) sinh2(2y) + <(ξ∗hdh) sinh(4y)
+Gh(cosh(2y)− 1)− 2<(Khe

α) sinh(2y)
+β

(19)
where

Gh =
∑
l 6=i,j |mh(i, l)|2 + |mh(j, l)|2

+|mh(l, i)|2 + |mh(l, i)|2
Kh =

∑
l 6=i,jmh(i, l)m

∗
h(j, l)−m∗h(l, i)mh(l, j)

(20)
and β is a constant independent from y and α.

We differentiate equation (19) with respect to y and make a
linear approximation to the zeros of this derivative. We get

y = arctanh
(
<(Khe

α − ξ∗hdh)
2(|dh|2 + |ξh|2) +Gh

)
(21)

Finally, the developed algorithm, referred to as Complex SHRT
(CSHRT), is given in Table I.

Table. I
CSHRT ALGORITHM

Require : Mk, k = 1, · · · ,K, fixed threshold τ
and maximum sweep number Mit.

Initialization: V = IN and A = IN .
while maxi,j(|y| , |θ|) > τ and (#sweeps < Mit)

for all 1 ≤ i < j ≤ N
Unitary transform

Estimate Gij(θ, ϕ) using solution given in [6].
Updates matrices V,Mk using equation (22).

Shear transform
Estimate the matrix Mh which has the maximum

departure to the normality.
Compute the phase parameter α using (18).
Compute Shear parameter y using equation (21).
Matrices updates using equation (23)

end for
end while.

The proposed CSHRT algorithm can be summarized as follows.
Given the complex matrices Mk k ∈ {1, ...,K}, an iterative
scheme is applied to get the matrix V which is the left inverse
of the mixing matrix A given in equation (1). One iteration
is achieved by successive unitary and Shear transformations.
Using the solution given in [6], the unitary transformation can
be applied to get G(θ, ϕ). The last transformation is used to
update the matrices according to{

V ← VG(θ, ϕ)
Mk ← G(θ, ϕ)HMkG(θ, ϕ)

(22)

where V is the estimated left inverse of the mixing matrix A.
The Shear transformation is achieved by computing the shear
parameters α and y. The phase parameter α is obtained by using
equation (18) and the angle parameter y is computed by equation

(21). Once these parameters are obtained, the first scheme
of shear rotation is applied to update the different matrices
according: {

V ← VS(y, α)
Mk ← S(−y, α)MkS(y, α) (23)

The overall proposed algorithm, named complex SHRT
(CSHRT), is summarized in Table I. Note that the last algo-
rithm is the first version of CSHRT, other modifications can be
introduced to get the other versions.
The second version can be developed by taking into account
only the entries twice affected given in equation (13) which
leads to minimize the criterion CT1(y, α) given in equation (16).
The phase parameter α is the same as given in (18) but the shear
angle y is obtained by:

y = arctanh
(
− <(ξ∗hdh)
2(|dh|2 + |ξh|2)

)
(24)

The third version is realized by differentiating equation (19) with
respect to y, α and making a linear approximations to the zeros
of obtained derivatives. The formula of y is kept unchanged as
in (21) but the phase parameter is:

α = arg

(
N∑
l=1

mh(i, l)m
∗
h(j, l)−mh(l, i)

∗mh(l, j)

)
− π

(25)
CSHRT1 is the version given in Table I, the second version
noted CSHRT2 is the same as CSHRT1 except for y which is
computed by (24) instead of (21). The last version CSHRT3 is
also the same as CSHRT1 except for the phase parameter which
is obtained by equation (25) instead of equation (18).

V. SIMULATION, RESULTS AND DISCUSSIONS

In this section, we have tested the different proposed algorithm
versions and compared with respect to JDTM and SJD (Simple
Joint Diagonalization algorithm) given in [8,14] respectively for
different cases.

In the first case, the target matrices satisfy exactly the equation
(1), this case is named the exact JEVD case. The aim of this part
is to show the convergence rate of each algorithm.
In the second case, the target matrices did not satisfy the equa-
tion (1) which leads to the case of approximative JEVD. The
objective of this case is to get the noise robustness of each algo-
rithm.
The used Performance Index (PI) is the same as in [7, 16] evalu-
ated over 100 Monte-Carlo realizations. The definition of PI is

PI (Q) = 1
2N(N−1)

∑N
n=1

(∑N
m=1

|q(n,m)|2

maxk|q(n,k)|2
− 1
)

+
1

2N(N−1)
∑N
n=1

(∑N
m=1

|q(m,n)|2

maxk|q(k,n)|2
− 1
)
(26)

where Q = V̂A is the global matrix. For a tested algorithm,
when the obtained PI value is close to zero, it means that the
JEVD quality reached is good.
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(a) Case of K = 5 and N = 5
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(b) Case of K = 5 and N = 10
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(c) Case of K = 5 and N = 25
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(d) Case of K = 5 and N = 35

Fig. 1: Mean PI versus sweep number in exact JEVD for different matrix dimensions

A. Exact JEVD case

In this case, all matrices A and {Dk}k=1,...,K are generated
by considering normal distribution, independent and complex
for all entries. Hence, the target matrices {Mk}k=1,...,K are
obtained by using equation (1). All considered algorithms are
applied to these matrices in order to realize the JEVD.

We have realized the JEVD of five matrices ( K = 5)
and varying the matrix dimension N . N takes these values
{5, 10, 25, 35}. The Figure 1 shows obtained results. Note that
as the number of matrices K is less important compared with
the matrices dimension N , as the JEVD difficulty increases.
However, the considered algorithms are differently affected by
this difficulty. JDTM is the less affected one and presents the
best convergence rate.

The SJD algorithm, as shown in Figures 1(c) and 1(d), diverges
completely when the ratio K

N is less than 20% due to the in-
troduced approximations considered by this algorithm as ex-
plained in [14]. Note that this algorithm uses the second scheme
of generalized Givens rotations by considering small changes
(λs = λg u 1). It minimizes the simplified criterion given (9)
which introduces this divergence for difficult JEVD.

The performance of the different proposed version of CSHRT
are in-between those of SJD and JDTM. This is due to using
only one target matrix to estimate shear parameters instead of
considering all target matrices. Note that the second version
is the most efficient when the CSHRT3 is the worst version
which implies that the phase parameter α is better estimated
with equation (18) instead of formula (25). By analyzing curves
of figure 1, CSHRT1 and CSHRT2 have quadratic convergence
where CSHRT3 has a linear convergence.
The second comparison can be done between CSHRT1 and
CSHRT2. The difference between these versions is the computa-
tion of the shear angle y. The first version CSHRT1 minimizes
the total criteria given in (15) where the second version CSHRT2

minimizes the simplified criterion given (16). Surprisingly, the
second version is better than the first version, it can be seen in
curves of figures 1(c) and 1(d).

B. Approximative JEVD case

In this case, the target matrices are generated using the equation
given in (27) as:

Mk = ADkA−1 + Ξk (27)
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Fig. 2: Median PI versus perturbation level in approximate
JEVD (K = N = 5)

where Ξk is a noise matrix. The inverse perturbation level (IPL)
can be measured by:

PL(dB) =

∥∥ADkA−1
∥∥
F

‖Ξk‖F
(28)

The noise matrix Ξk is generated as Ξk = %kΥk where Υk is
a random matrix (generated at each Monte Carlo run) and %k is
a positive number allowing to tune the perturbation level, it can
be seen as kind of matrix SNR.
Algorithms’ performance are evaluated according to the IPL
for K = 5 and N = 5. Obtained results are given in Figure 2
where PI versus IPL curves are shown. Note that all algorithms
reach approximatively the same performance as it can be seen in
Figures 2 except for CSHRT3 where the phase is less estimated.
The difference can be seen in the convergence rate as illustrated
in subsection A..

VI. CONCLUSION

In this paper, the JEVD problem using generalized Givens ro-
tation is considered in the complex case. We have seen the
different JEVD criteria and rotation schemes. We have general-
ized SHRT algorithm to the complex case by considering three
versions. Surprisingly, the second version is the most efficient
compared to the other ones. By considering the results presented
in the simulation section, one can deduce that minimizing the
simplified criteria leads to most efficient estimation of shear
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parameters (α and y). The presented algorithm is less efficient
compared to JDTM, this is due to the introduced simplifica-
tions and approximations. These simplifications can be listed
as: only one target matrix is considered for shear rotation and
the shear parameter y is obtained by using some linear approxi-
mations. However, the proposed algorithm seem to be efficient
with relatively low computational cost.
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