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Abstract−This paper studies the estimation problem of speed in a Doubly Fed Induction Machine (DFIM) controlled by 
a Field Oriented Control (FOC) Strategy. The DFIM is the most responsive in variable speed. The chosen configuration 
uses two voltage inverters connected to the stator and rotor windings, to adopt the power distribution between them 
through the pulses distribution of the stator and the rotor in motor operating mode. It is necessary to model the DFIM 
in three-phase equations and then in two-phase equations faithfully representing the characteristics of the machine. 
From this model, we can design and simulate the control.  The control by oriented rotor flux can be realized by using 
the speed provided by sensors or estimators. In this paper, we have used the Extended Kalman Filter (EKF) in order to 
avoid problems caused by the motor speed sensor and improve the robustness of the control and its performance 
without using any speed sensor.  
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I. INTRODUCTION 

The Doubly Fed Induction Machine (DFIM) presents several 
advantages as well as a generator mode in wind energy 
conversion systems, like wind-turbine or pumped storage 
systems, and as a motor mode in high power applications such 
as traction and marine propulsion [1]. The DFIM operates in 
motor mode and is powered by two voltage inverters, one is 
feeding the stator and the other is for the rotor [2] (Fig.1). The 
inverters are controlled by the Pulse Width Modulation 
(PWM) technique [3]. The control strategy proposed in this 
paper is a Field Oriented Control (FOC). This control strategy 
is applied to ensure  good dynamic performance, stability and  
motor current decoupling in synchronous reference frame      
(d, q) [4]. The strategy is achieved without using any 
information about the rotor’s position or speed. 
In most cases, a mechanical sensor measures the speed. 
Although this requires a location installation that causes 
difficulties access and requires additional space that reduces 
reliability in harsh environments and increases the cost of the 
machine [5]. To remove this sensor, the most technical ones 
are based on estimation theory combined with the 
mathematical machine model. The extended Kalman filter is 
used to estimate the speed of the DFIM as a function of the 
measured stator and rotor currents and voltages. The estimated 
speed is used overall. The simulation results obtained by the 
control with speed sensor and by estimated speed are 
presented in a comparative table. 

 
Fig. 1: General principle of a DFIM powered by two inverters. 

 

Msr, 
M 

Mutual inductance between a stator phase and a rotor 
phase, M:maximum value of the Mrs   

Ls, Lr Stator and Rotor self-inductancesrespectively 
σ  dispersion coefficient (σ=1-M^2/LsLr) 
Rs,Rr  stator and rotor resistances. 
Ts, Tr    Stator and rotor time-constants (Ts = Ls,/Rs ;Tr = 

Lr,/Rr  ) 
θs ,θr Angle tracking of the stator flux and rotor relative to 

the benchmark 
 Electrical angle between the axis of the stator 

windings and the rotor windings 
Ids, Iqs d-axis and q-axis component of stator current in 

stationary reference frame 
Idr, Iqr  d-axis and q-axis component of rotor current in 

stationary reference frame 
Vds, 
Vqs 

d-axis and q-axis component of stator voltage in 
stationary reference frame 

Vdr, 
Vqr 

d-axis and q-axis component of rotor voltage in 
stationary reference frame 

ωs ,ωr The stator and rotor  pulsation  
Ω   Mechanical speed of rotor 
ϕds,ϕqs Stator  flux two phase in a rotating frame 
ϕdr,ϕqr Rotor  flux two phase in a rotating frame 
Tem  Electromagnetic Torque. 
Cr  Load torque. 
J  Total inertia. 
kf Coefficient of  friction 
p Number of pole pairs of the machine 
𝑇 Sampling time,  =0.00001s 
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The paper is organized as follows: Section II and III 
summarize the mathematical model and vector control by 
rotor field oriented of the DFIM with speed sensor. Section 
IV is devoted to estimate the rotor speed by the extended 
Kalman filter used in the developed strategy.  
 
The rest of the paper is organized as follows. Section II and 
III summarize the mathematical model and vector control 
by rotor field oriented of the DFIM with speed sensor. 
Section IV is devoted to estimate the rotor speed by the 
extended Kalman filter used in the developed strategyThe 
last section presents the simulation results obtained by the 
application of the control with and without speed sensor 
presented in a comparative table. 

II. MATHEMATICAL MACHINE MODEL  

To achieve good dynamic performance in the control of a 
DFIM, it is necessary to have a model that faithfully 
represents the machine's behavior, not only in permanent 
regimes, but also in transient regimes. 
The induction machine consists of three windings located 
symmetrically in the notches of stator and rotor. DFIM 
comprises three stator coils and three rotor coils offset by an 
identical distribution angle. 
Vectors equations of voltages, currents and total stator and 
rotor fluxes are given as follow [6]: 
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The following matrix relations give the expressions of 
the total fluxes through the stator and rotor windings:  
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[Mrs] = [Msr]T. 

 are sub-matrices of  
inductances given by: 
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The modeling of the DFIM is based on the general 
equations in the Park transformation applied on the stator 
and rotor windings, these equations are resulted as 
following [6]: 
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    (11) 

 
 

(12) 

 
where ωs, ω are the stator and rotor pulsations respectively,  
 ;  Ω is the mechanical rotating speed.  

The dynamical equation and the electromagnetic torque 
 are given by equations (13) and (14) respectively: 

 
 

(13) 

  
 

(14) 
 

The machine is powered directly by double three phase 
voltages perfect sources: as it is represented in Fig. 1. 

III. FIELD ORIENTED CONTROL OF DFIM  

For the Field Oriented Control (FOC) of the DFIM, it is 
necessary to choose a reference frame (d, q) for obvious 
reasons of simplifications. This technique consists of the 
orientation of the stator and rotor flux. 
The (d) axis orientation in the direction of the stator flux 
is the most used in DFIM control as shown in (Fig. 2) 
[7,8]. 
 

 
 

Fig. 2: DFIM axis orientation in d-q reference 
 
 



9 ENP Engineering Science Journal, Vol. 2, No. 2, December 2022 

 

The relative angular position of the (d) axis of the rotating 
reference d-q is given by:  

                                 (15) 

 
Where, 

 is the angular position relative to d axis  
 : represents the electrical angular position of the rotor 

relative to the stator reference frame.   
With, 
 

   (16) 

 
From equations (9) and (10), and by replacing the fluxes by 
their values and introducing the intermediate voltages [7], 
we obtain the follow equations: 

  (17) 

 

(18) 

 

With: ;     . 

Where:     are compensation 
terms given by  

 

  
(19) 

  

This method gives us the transfer functions between 
currents and  voltages of the stator and the rotor 
respectively : 

 

 

(20) 

With  is Laplace operator. 
Hence, the application of stator FOC allows us to obtain the 
following equation  

 
 

(21) 

This choice makes it possible to write system equations as 
follows: 

 

 

(22) 

The different references of the currents to be regulated for 
an orientation of the rotor flux and unit power factor 
operation (with cos φ = 1) at the rotor are given by [9].  

            (23) 

 

 
   

(24) 

 
The stator flux depends on rotor flux. 

 
Finally, one can summarize the vector control strategy with 
oriented rotor flux of the machine in the overall diagram 
presented in Fig. 4. 
 

IV. ESTIMATION OF SPEED BY THE KALMAN FILTER 

The position or the speed of the DFIM information on the 
rotor is very important in the control. It is generally 
obtained through a mechanical speed sensor. However, this 
sensor requires a place for its installation and leads to 
difficulties in its mounting; it is sensitive to noises and 
vibrations. Several strategies have been proposed in the 
literature to eliminate this mechanical sensor. Among these 
strategies, there is the estimation by the Extended Kalman 
Filter (EKF). This Kalman filter is an observer for a 
nonlinear closed-loop with a variable gain matrix. At each 
calculation step, this Kalman filter predicts the new values 
of state variables of the DFIM. The prediction of values is 
made by minimizing the noise effects and modeling errors 
of the parameters or variables state. The noises are 
supposed to be white, Gaussian, and not correlated with the 
estimated states [10].  
 

 
 
 
 
 

Fig. 3: Compensation terms in FOC strategy of DFIM 
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IV.1. SELECTION  OF DFIM MODEL   

The state equation of motor model is given as following 
[11]: 
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   (26) 
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(29) 

Where ai and bi parameters are given by: 

 
 
 
 
 

 
 

 
 
 

 

 ;    ;  ;   , 

  ;   ;   ;    . 

 ;    ;   

The dimension of the state vector is increased by adding the 
angular speed of the rotor, in this case, the angular speed of 
the rotor is considered in the state variable.  The state 
vector becomes: 

 
 

(30) 

 
 

(31) 

   

IV. 2. DISCRETIZATION OF THE MODEL  

The time-discrete state space model of the DFIM model 
obtained from equations (25) and (26) can be written as 
follow [11]: 
 

   (32) 

k: represents the number of an iteration in the discrete 
of  state equation 

Fig. 4: global scheme of  DFIM control by FOC 
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 are the state noise which corresponds to the non-
deterministic part the measurement noise respectively 

 

With:  ; ,  

Where Ak, Bk and Ck are the discrete system matrix, input 
matrix and output matrix respectively: 

   (33) 

 In the equation (33), T and  I are  the sampling time and the 
identity matrix respectively. The discrete state space model 
is therefore defined by: 
 

 
  

(34) 

The Kalman filter considers that the state and the 
measurement noises vector as Gaussian white noise of zero 
mean. 
The covariance matrices are, respectively, Q and R; defined 
by:  

   (36) 

 
With the noises  and  are white noises uncorrelated 
Gaussian, characterized by zero mean of the covariance 
matrices  and  
 
 

IV.3. IMPLEMENTATION OF THE KALMAN FILTER 
ALGORITHM  

In the first time, it is necessary to use initial values of the 
covariance system matrices of the measurement noises and 
the state noises (Q) and (R), respectively, to obtain the best 
considerable speed value [12]. They have  important results 
on the stability filter and convergence time. These matrices 
are supposed  diagonal covariances. 
Initialization: There are two steps to implement the EKF 
algorithm, the first is the prediction, the second is the 
correction, and these two steps are introduced by an 
initialization of state vector X0 and the covariance matrix 
P0,Q0 and R0. 
- State vector prediction at time (k +1): 

 The filtering algorithm contains two principal 
steps, a prediction step and a filtering step [12; 13]. 

In the first one, the  predicted states values  are 
obtained by using a mathematical model (state-variable 
equations), and also the previous values of the estimated 
states:  

 
  

(37) 

 
Therefore, the predicted state covariance matrix (P) is 
obtained before the new measurement values. 
At the end, the mathematical model and also the covariance 
matrix of the system (Q) are used. 
 

 During the second step, which is the filtering, the 

estimated states  are obtained from the predicted 
ones, they estimate  by adding a 
correction term  to the predicted value. 
This correction term is a weighted variety between the 
current output vector  and the predicted output vector . 
Here K is the Kalman gain [13]. 

V. RESULTS AND DISCUSSION 

The simulations of the DFIM control and speed estimation 
method with the extended Kalman filter have been done 
using the MATLAB/Simulink software. Simulation results 
are shown in Figures from Fig5 to Fig8. Figure 5(a) 
represents the speed response using the mechanical sensor 
after applying a reference step of speed at (t = 0.1s); then the 
load torque is applied at (t = 0.6s).  After that, the reversal of 
the rotation direction is applied at (t = 1.2s). Figure 5(b) 
presents the estimated speed  by EKF resembling to the real 
speed  it. Electromagnetic torque with a sensor of speed  and 
with EKF are shown in Figures 6(a)  and 6(b) respectively. 
The same things are applied in the stator Currents in Figures 
7 (a) and 7(b), and  Rotor currents in Figures 8 (a) and 8(b). 
Except in the case of a sensor-less control, there is a small 
fluctuation due to the estimation by the Kalman filter. These 
results are shown in the diagram; we develop a speed 
estimation of the DFIM using the EKF, eliminating the 
mechanical speed sensor. Note that the Kalman Filter 
estimator presents a good tracking for the rotor speed with a 
weak error in steady state, the EKF is still robust during the 
load application and reversal of the speed. 

VI. CONCLUSION 

In this paper, a vector Control strategy of DFIM with and 
without mechanical sensor by estimation using EKF is 
presented. It has been shown that oriented rotor flux vector 
control combined with a speed sensor has been realized in 
order to obtain good decoupling between flows and a good 
regulation of motor currents, in order to ensure a good 
dynamic performance of the global system. In the same 
time, it solves the problems of the speed control with 
mechanical sensor. The interesting simulation results 
obtained on the control show the efficiency, the convergence 
and the stability of the system in case of load noise or 
change variation. The use of the EKF in the vector control 
allows obtaining a good decoupling and a good regulation of 
the currents in order to ensure a good dynamic performance 
of the global system in the speed control by estimation .In 
this work a robust sensor-less control combined with an 
EKF approach has been shown.  
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FOC results with speed sensor FOC results with speed estimation 

Fig .5 (a) Step Speed Response Fig .5. (b) Step Speed Response  

Fig .6. (a) Electromagnetic Torque Fig .6. (b) Electromagnetic Torque  

Fig .7 (a) Stator current Fig .7.  (b) Stator current 

Fig .8 (a) Rotor current Fig .8. (b) Rotor current 
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APPENDIX 

 DFIM parameters used in simulation 

Stator resistance                        Rs=1.20 Ω 

Rotor resistance                        Rr=1.80 Ω 

Stator inductance                      Ls = 0.1568 H 

Rotor inductance                       Lr = 0.1554 H 
mutual inductance                     M=0.150H 
Inertia moment                          J=0.070 Kg.m2 
Coefficient of viscous               f=0.001 

Number of pairs of poles           P=2 
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