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A New Robust Adaptive Algorithm for Second
Order Blind Source Separation

Zineb Bekhtaoui, Karim Abed-Meraim, Abdelkrim Meche, and Messaoud Thameri

Abstract—This paper deals with the adaptive blind source separation problem in presence of impulsive noise. New
algorithms extending the well known SOBI method from batch to adaptive scheme are introduced. At first, the standard
Gaussian noise case is considered, leading to our first algorithm referred to as Adaptive SOBI (A-SOBI). Later on, a
robust version of A-SOBI, referred to as RA-SOBI is derived to handle the impulsive noise case. RA-SOBI relies on
robust subspace tracking for the whitening stage together with robust correlation estimation for the separation stage. All
proposed algorithms are of relatively low complexity and allow to achieve good separation quality as illustrated by our
simulation results.
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I. INTRODUCTION

Blind source separation (BSS) consists of the extraction of
source signals from their observed mixtures without prior knowl-
edge of the mixing matrix or its inputs. BSS is widely used in
many signal processing applications, and a plethora of works
have been devoted to develop solutions in different contexts
and under different mixing models, e.g., [1–7]. In particular,
second order statistics based methods are highly regarded due to
their low computation load and efficiency to separate temporally
coherent (colored) sources. These features make them suitable
for adaptive scheme when dealing with streaming data. Sev-
eral algorithms have been already dedicated to such an adaptive
scheme including [4, 5, 8–13]. Most of existing algorithms con-
sider noise as being Gaussian or negligible. However, in many
applications the measurements are affected by impulsive noise
or outliers, e.g., [21–23], in which context standard methods fail
to achieve the BSS. To deal with impulsive noise, some authors
have proposed robust batch BSS algorithms, e.g., [7, 14–18].

In this work, we propose to deal with both streaming data (i.e.
adaptive scheme) and impulsive noise. Hence, a new approach
that ensures both robustness and adaptivity is introduced based
on second order decorrelation approach. At first, we consider
only the streaming data case and introduce the adaptive Sec-
ond Order Blind Identification (SOBI) algorithm [12] for the
Gaussian noise case. In this algorithm, referred to as Adaptive
SOBI (A-SOBI), the source separation is performed in two steps:
whitening and joint diagonalization. The whitening is achieved
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using an adaptive Principal Components Analysis (PCA) algo-
rithm followed by the joint diagonalization conducted on several
non zero lag correlation matrices. Then, our Robust Adaptive
SOBI (RA-SOBI) algorithm is derived via the use of robust PCA
tracking algorithm [19] for the whitening step by minimizing
a weighted least criterion. Moreover, to improve furthermore
the robustness of the algorithm, we propose here to estimate
the non zero lag correlation matrices, considered in the joint
diagonalization step, via robust estimation techniques [24].

This paper is organized as follows: Objectives and problem
formulation are stated in section II.. The A-SOBI algorithm is
given in section III.. Section IV. introduces RA-SOBI algorithm,
while section V. is dedicated to simulation results providing the
evaluation of our algorithms effectiveness. Finally, our conclud-
ing remarks are given in section VI..

Notations: The conjugate transpose, the transpose, the conju-
gate, the inverse, and the trace operations are represented by ()H ,
()T , ()∗, ()−1, and tr() respectively. a denotes a scalar, a de-
notes a vector, A denotes a matrix, ‖ · ‖2 denotes the Euclidean
norm, I represents the identity matrix, and Aij represents the
(i, j)-th element of A.

II. PROBLEM STATEMENT

Consider a streaming data of multivariate n × 1 dimensional
vectors x(t) corresponding to the noisy mixtures of p < n
sources, i.e. s(t) = [s1(t), · · · , sp(t)]T , according to

x(t) = As(t) + n(t) (1)

where A is the unknown n × p mixing matrix assumed to be
of full column rank and n(t) is the additive noise vector as-
sumed to be of zero mean and spatially white with covariance
E(n(t)nH(t)) = σ2I. The zero mean source signals are as-
sumed to be temporally coherent but mutually decorrelated, i.e.
E(si(t+ τ)s∗j (t)) = δijρi(τ) where ρi(τ) represents the corre-
lation function of the i-th source signal and δij is the Kronecker
index.

Our objective in this work is to exploit the statistical (mutual)
decorrelation information of the sources to retrieve the latter
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Noise illustration: NI = 2; t1 = 2550; b1 = 100; t2 = 4525; b2 = 50

Fig. 1: Illustration of the noise n(t). The burst noise here
appears in two occasions: at time 2500 and 4500 with duration
100 and 50, respectively.

from the observed data x(t) using only its second order statistics.
Hence, this blind source separation problem consists of finding
a separation matrix B so that (2) represents an estimation of the
source vectors ŝ(t) up to permutation and scaling factors2 .

ŝ(t) = Bx(t) (2)

As mentioned earlier, we consider here an adaptive scheme,
where the model in (1) can be non-stationary but ’slowly’ vary-
ing, and address the case where observed data is corrupted by
impulsive noise. After considering first the adaptive scheme
in a Gaussian noise case, we extend our algorithm to the burst
noise3 context modeled by additional centered Gaussian white
noise with larger amplitudes occurring in short periods of time.
The burst noise n(t) can therefore be written as

n(t) = nG(t) +

NI∑
i=1

u
( t− ti

bi

)
niI(t) (3)

where nG(t) and niI(t) are white centered Gaussian noises of
variances σ2

G << σ2
I . niI(t) is weighted by u(·) a rectangular

function which is used to describe the short duration appearance
of the burst noise as illustrated by Fig. 1. NI refers to the
number of impulsive events, ti is the center of the i-th impulsive
event, and bi is its duration.

III. A-SOBI ALGORITHM: GAUSSIAN NOISE CASE

A-SOBI algorithm consists of a separation approach by second
order decorrelation, which proceeds in two steps: Whitening
and diagonalization which are detailed next.

A. Whitening step

This step consists of projecting the observed vector x(t) onto
the principal subspace spanned by the column vectors of the
mixing matrix A, with the purpose of transforming it into a
unitary matrix. The used matrix in this transformation is called
the whitening matrix W.

2 The latter are inherent indeterminacies of the BSS problem [3].
3 This is the noise model used in our simulations, but other im-

pulsive noise models can be considered as well [27].

In [3], it has been shown that the whitening matrix W can
be computed from the eigen-decomposition of the covariance
matrix of x(t), denoted Cx, as follows:

Cx = UsΛUH
s + σ2I (4)

W = Λ−1/2UH
s (5)

where Us and Λ are the matrices of the p principal eigenvectors
and eigenvalues of the noise free covariance matrix. In an stream-
ing data scheme, the exact eigenvectors and eigenvalues are
replaced by their adaptive estimates using Givens-Orthogonal
Projection Approximation Subspace Tracking (GOPAST) algo-
rithm (see details in [12, 20]) according to:

W(t) = Λ(t)−1/2UH
s (t) (6)

The estimates of the principal components were obtained by us-
ing the linear cost GOPAST algorithm [20], i.e. its cost isO(np)
flops per iteration. This latter consists of estimating adaptively
a basis D(t) of the principal subspace of the covariance ma-
trix Cx with the GOPAST algorithm, starting with minimizing
(0 < β ≤ 1 being a chosen forgetting factor):

J (Us(t)) =

t∑
j=1

βt−j
∥∥x(j)−D(t)DH(t)x(j)

∥∥2 (7)

followed by an appropriate diagonalization using Givens rota-
tions to get Us(t) and Λ(t).

Note that since we are dealing with a slowly time varying system,
β can be chosen to have a high value to insure faster convergence
rate.

Remark: In GOPAST algorithm, Λ corresponds to the diagonal
matrix of the principal eigenvalues of the covariance matrix Cx.
Implicitly, this means that the noise term (i.e. noise power σ2)
has been neglected in (4). In case, the latter cannot be considered
as negligeable, one can estimate it as shown in [19] and replace
in (6) Λ(t) by Λ(t)− σ2(t)I.

B. Diagonalization step

After whitening, the mixing matrix is approximately reduced
to a p× p unitary matrix denoted UH(t) and hence the noise-
less whitened signal can be written as x̃(t) = W(t)x(t) ≈
UH(t)s(t). To estimate the separation matrix U(t), A-SOBI
uses a joint diagonalization of K correlation matrices corre-
sponding to K chosen non-zero lags τ1, · · · , τK . The latter are
adaptively estimated as:

Rt(τk) = βRt−1(τk) + ŝ(t)ŝH(t− τk) (8)

Where 0 < β < 1 is a forgetting factor and ŝ(t) = U(t)x̃(t). To
achieve the joint diagonalization, it is first stated that the unitary
separation matrix can be computed as a product of elementary
Givens rotations:

U =

p−1∏
l=1

p∏
m=l+1

Gl,m(θ, φ) (9)
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where Gl,m(θ, φ) is a p× p matrix equal to the identity except
for its (l, l), (l,m), (m, l) and (m,m) entries. It is given by:

Gl,m(θ, φ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s∗ · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


(10)

where c = cos(θ) and s = sin(θ)e−jφ. Thanks to the
mutual decorrelation of the source signals, the separation is
achieved when the correlation matrices R(τk) are diagonalized
(see [3] for more details). To perform the latter diagonalization
in an adaptive way, one multiplies at each time step R(τk) at
its left and right sides by the elementary Givens rotation G(t)
according to:

R′(τk) = G(t)R(τk)GH(t) (11)

The rotation indices l andm are selected to be the corresponding
indices of the entries of largest amplitude according to:

(l,m) = arg max
{(i,j)|i<j}

K∑
k=1

|Rij(τk)| (12)

Remark: Another way to select rotation indices (l,m) at time
t would be to visit periodically along the iterations all entries of
the correlation matrices, according to:

(l,m) =


(l′,m′ + 1) if m < p

(l′ + 1, l′ + 2) if m = p and l′ < p− 1

(1, 2) if m = p and l′ = p− 1

(13)

(l′,m′) being the chosen indices at time t− 1. Also, instead of
one single rotation per time instant, one can use two rotations
with indices chosen according to the previous two methods in
order to increase the algorithm’s convergence rate, at the cost of
increased computational complexity.

Finally, the rotation angles are obtained by minimizing the sum
of off diagonal elements of the K considered correlation matri-
ces:

(θ, φ) = arg min
θ,φ

∑
a6=b

K∑
k=1

|R′ab(τk)|2 (14)

This is proven to be equivalent to solving

(θ, φ) = arg max
θ,φ

vHFFHv (15)

where

v =

 cos(2θ)
sin(2θ) cos(φ)
sin(2θ) sin(φ)


and

F =

Rll(τ1)−Rmm(τ1) · · · Rll(τK)−Rmm(τK)
2< (Rlm(τ1)) · · · 2< (Rlm(τK))
2= (Rlm(τ1)) · · · 2= (Rlm(τK))



<(·) and =(·) denote the real and imaginary parts of their ar-
gument and Rlm(τk) is the (l,m)-th entry of matrix R(τk).
An optimal solution is finally given by v = [v1, v2, v3]T =
sign(u1)u (u1 being the 1st entry of u) where u is the unit-
norm eigenvector corresponding to the principal eigenvalue of
matrix FFH . The angle parameters are finally obtained as:

c =

√
v1 + 1

2
and s =

v2 − jv3
2c

(16)

IV. RA-SOBI: IMPULSIVE NOISE CASE

Here, we extend the previous algorithm and propose a robust
version to deal with impulsive noise.

To do so, we modify A-SOBI algorithm in two spots:

• First, we replace the GOPAST algorithm with a more
robust one to estimate the eigen components of the covari-
ance matrix Cx(t).

• We apply the diagonalization step to robust estimates of
the correlation matrices of the whitened signal Rt(τk).

These two steps are detailed next.

A. Robust whitening

In order to estimate the principal components used in the whiten-
ing step, we propose here to use the recently robust algo-
rithms proposed in [19]: Givens-Mahalanobis-Fast Approx-
imated Power Iteration (GMFAPI) and its low-cost version
Givens-Hard Thresholding-Fast Approximated Power Iteration
(GHTFAPI). These algorithms consist of minimizing, under uni-
tary constraint, the following weighted least squares criterion in
order to estimate the principal subspace of the covariance matrix
Cx (represented by its n× p orthonormal basis D(t)):

J (D(t)) =

t∑
j=1

βt−jω(j)
∥∥x(j)−D(t)DH(t)x(j)

∥∥2 (17)

where ω(j) is a soft weighting (resp. hard thresholding) factor
considered by GMFAPI (resp. GHTFAPI). This, implicitly, con-
sists of using a robust instantaneous estimate of the covariance
matrix Cx(t) according to

Cx(t) = βCx(t− 1) + ω(t)x(t)xH(t). (18)

One can solve this minimization problem using the power itera-
tion method resumed by the data compression expressed in (19)
and the orthonormalization (20)

Cxy(t) = Cx(t)D(t− 1) (19)

D(t)R(t) = Cxy(t) (20)

A fast implementation is reached with the introduction of an in-
termediate p×p matrix denoted Z(t) representing an estimation
of C−1yy (t) with y(t) = D(t − 1)Hx(t). This implementation
is summarized in table 1 One can refer to [19] for the detailed
implementation.
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Algorithm 1 (table 1): Subspace basis D(t) implementa-
tion

1: Initialization

2: D(0) =

[
Ip

0(n−p)×p

]
; Z(0) = Ip

for each time step do :
3: input vector x(t)
4: y(t) = DH(t− 1)x(t)
5: h(t) = Z(t− 1)y(t)
6: ε2(t) = ||x(t)||2 − ||y(t)||2
7: weight computation: see table 2
8: g(t) = h(t)ω(t)

β+yH(t)h(t)ω(t)

9: τ(t) = ε2(t)

1+ε2(t)||g(t)||2+
√

1+ε2(t)||g(t)||2

10: η(t) = 1− τ(t)||g(t)||2
11: y′(t) = η(t)y(t) + τ(t)g(t)
12: h′(t) = ZH(t− 1)y′(t)

13: ε(t) = τ(t)
η(t) (Z(t− 1)g(t)− (h′(t)Hg(t))g(t))

14: Z(t) = 1
β (Z(t− 1)− g(t)h′(t)H + e(t)gH(t))

15: e′(t) = η(t)x(t)−D(t− 1)y′(t)
16: D(t) = D(t− 1) + e′(t)gH(t)
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Fig. 2: Illustration of the weight criterion ω(t) when the burst
noise appears in two occasions: at time 2500 and 4500 with
duration 100 and 50, respectively.

Now, this criterion aims to mitigate the corrupted observations
impact thanks to the weighting factor. Therefore, ω(t) should
take small values when impulsive noises occur (see illustration
in Fig. 2 for the weight factor of GMFAPI). To achieve that, GM-
FAPI and GHTFAPI algorithms use the following approaches:

1— GMFAPI: This algorithm uses the inverse of the Maha-
lanobis distance [25] to be the weight

ω(t) =
1

d2M

(
x(t),C−1x (t− 1)

) =
1

xH(t)C−1x (t− 1)x(t)

(21)
The following fast implementation of the latter was proposed
in [19]

x(t)HC−1x (t− 1)x(t) = y(t)Hh(t) +
||x(t)||2 − ||y(t)||2

σ2
n(t− 1)

(22)

Where h(t) = Z(t− 1)y(t). Now, the noise power σ2
n(t) can

be estimated as

σ2
n(t) =

tr
(
Cx(t)

)
− tr

(
Cyy(t)

)
n− p

(23)

Where tr(·) refers to the matrix trace operator. Tx(t) =
tr
(
Cx(t)

)
and Ty(t) = tr

(
Cyy(t)

)
can be effectively calcu-

lated as

Tx(t) = βTx(t− 1) + ω(t)||x(t)||2

Ty(t) = βTy(t− 1) + ω(t)||y(t)||2

hence, the weight factor is obtained by ω(t) = 1/δ′(t) where

δ′(t) = y(t)Hh(t) +
(||x(t)||2 − ||y(t)||2)(n− p)

Tx(t− 1)− Ty(t− 1)
(24)

2— GHTFAPI: To reduce further the computational cost of ω(t),
a hard thresholding method was used in GHTFAPI. Indeed,
considering the fact that ε2(t) = ||x(t)||2 − ||y(t)||2 represents
approximately the instantaneous noise power, GHTFAPI uses it
to determine whether to include the corresponding observation
or not, according to{

ω(t) = 0 if ε2(t) > threshold(t)

ω(t) = 1 if ε2(t) < threshold(t)
(25)

where the threshold is determined using the well known Inter
Quartile Range (IQR) method [26] applied on the last L samples.
Hence, we define:

ε̃(t) = {ε2(t− L+ 1) · · · ε2(t)}

IQR(t) = Q3
(
ε̃(t)
)
−Q1

(
ε̃(t)
)

threshold(t) = Q3
(
ε̃(t)
)

+ 1.5IQR(t) (26)

with Q1(·) and Q3(·) representing respectively the lower and
the upper quartiles.

One can refer to table 2 for an overview of the two methods
regarding the computation of the weighting factor.

At this stage, we have a robust estimate of a basis of the principal
subspace as well as an estimate of Z(t) ≈ C−1yy (t). Thus, we can
perform an adaptive diagonalization on Z(t) using elementary
Givens rotations to obtain the principal components Us from the
principal subspace basis and the principal eigenvalues Λ from
Z(t). Indeed, we have Us = DQ where Q is a unitary matrix
that can be expressed by Q =

∏
G̃l̃,m̃(θ̃, φ̃) and G̃l̃,m̃(θ̃, φ̃) is

a Givens rotation as expressed in (10).

Now, to compute the latter, let us address the fact that the exact
matrix Z′ is diagonal. Hence, we define the Givens parameters
so that the off diagonal elements of Z′ = GZGH are minimized.
That is to say:

(θ̃, φ̃) = arg min
θ̃,φ̃

∑
a6=b

|Z ′ab|2 = arg max
θ̃,φ̃
|ṽT f̃(t)|2 (27)

with

ṽ =

 cos(2θ̃)

sin(2θ̃) cos(φ̃)

sin(2θ̃) sin(φ̃)

 and f̃(t) =

Zll(t)− Zmm(t)
2< (Zlm(t))
2= (Zlm(t))





ENP Engineering Science Journal, Vol. 2, No. 1, July, 2022 25

Algorithm 2 (table 2): weighting factor computation
1: for each time step do :

Mahalanobis distance:
2: δ′(t) = y(t)Hh(t) + (||x(t)||2−||y(t)||2)(n−p)

Tx(t−1)−Ty(t−1)
3: ω(t) = 1/δ′(t)
4: Tx(t) = βTx(t− 1) + ω(t)||x(t)||2
5: Ty(t) = βTy(t− 1) + ω(t)||y(t)||2

Hard thresholding:
6: ε̃(t) = [ε2(t− L+ 1) · · · ε2(t)

]
7: IQR(t) = Q3

(
ε̃(t)
)
−Q1

(
ε̃(t)
)

8: threshold(t) = Q3
(
ε̃(t)
)

+ 1.5IQR(t)
9: if ε2(t) < threshold(t) then

10: ω(t) = 1
11: else
12: ω(t) = 0
13: end if

Algorithm 3 (table 3): Whitening
1: Initialization
2: D(t) and Z(t) from Table 1
3: (l̃, m̃) = (1, 2)

Givens rotations:
1st rotation:

4: Select rotation indices as in (28)
5: f̃(t) =

[
Zl̃l̃(t)− Zm̃m̃(t); 2<(Zl̃m̃(t)); 2=(Zl̃m̃(t))

]T
6: ṽ = sign(f̃1(t))f̃(t)/||f̃(t)||
7: c =

√
ṽ1+1

2 and s = ṽ2−ṽ3
2c

8: Determine G̃ as in equation (10)
9: Z(t) = G̃Z(t)G̃H

10: D(t) = D(t)G̃H

2nd rotation
11: Select rotation indices as in (13)
12: Apply the same steps in lines: (5-10)
13: W(t) = Z(t)1/2UH

s (t)

An optimal solution to that is

ṽ = [ṽ1, ṽ2, ṽ3]T = sign(f̃1(t))f̃(t)/||f̃(t)||

where sign(f̃1(t)) refers to the sign of the first entry of f̃(t).
The parameters c and s are defined as in (16) with replacing v
by ṽ.

Then again, to determine the indices (l̃, m̃), we select the largest
off diagonal element of Z(t):

(l̃, m̃) = arg max
{(a,b)|a<b}

|Zab(t)| (28)

Finally, for a better convergence speed, another rotation per
iteration is performed using automatic sweeping as in (13).

The whitening can be performed as in table 3

B. Robust estimation of correlation matrices

To further enhance the robustness od th proposed algorithm, we
propose to estimate the correlation matrices via robust estima-
tion techniques.

Algorithm 4 (table 4): Joint diagonalization
1: Initialization
2: W(t) from Table 3 ; U(0) = Ip

for each time step do :
for k = 1, · · · ,K

3: ŝ(t− τk) = U(t)W(t)x(t− τk); k = 1, · · · ,K
4: Rt(τk) = βRt−1(τk)+

√
ω(t)ω(t− τk)ŝ(t)ŝH(t− τk)

end for
5: determine (l,m) as in (12) or (13)

6: F =

Rll(τ1)−Rmm(τ1) · · · Rll(τK)−Rmm(τK)
2< (Rlm(τ1)) · · · 2< (Rlm(τK))
2= (Rlm(τ1)) · · · 2= (Rlm(τK))


7: u = eigs(FFH , 1)
8: v = sign(u1)u

9: c =
√

ṽ1+1
2 and s = ṽ2−ṽ3

2c

10: define G(t) as in (10)
for k = 1, · · · ,K

11: R(τk) = G(t)R(τk)GH(t)
end for

12: U(t) = U(t)GH(t)

Hence, since we consider several correlation matrices with dif-
ferent time lags for the diagonalization step, it is important to
take into account whether the observations at these time lags
are corrupted or valid. Thus, we propose here to weight the
estimates of the correlations with a combination of ω(t) and
ω(t− τk) to ensure the mitigation of erroneous data.

Hence, the correlation matrices are estimated as

Rt(τk) = βRt−1(τk)+
√
ω(t)ω(t− τk)ŝ(t)ŝH(t−τk) (29)

Therefore, RA-SOBI performs the diagonalization step exactly
as A-SOBI by replacing the correlation matrices estimates in (8)
by their robust ones given in (29) and its summary is given in
table 4

V. SIMULATION RESULTS

In order to investigate our algorithms performance, we simulate
the streaming data vectors x(t) of dimension n = 8 duringN =
6000 time steps. Those observations are generated using p = 3
source signals corresponding to filtered complex circular white
Gaussian processes by three AR filters of order 1 with respective
coefficients a1 = 0.95 exp (j0.5) , a2 = 0.75 exp (j0.7) and
a3 = 0.55 exp (j0.3).

These signals are then mixed and corrupted with additive white
centered Gaussian noise nG(t) imposing an SNR of 5dB.

We run M = 100 Monte Carlo simulations for all scenarios
and we evaluate the algorithms performance using the mean
rejection level defined in [3] as:

I(t) =
1

M

M∑
m=1

( p∑
i=1

∑
j 6=i |Lij(t)|2

|Lii(t)|2
)

(30)

Where L(t) = B(t)A(t) is close to a diagonal matrix (after
removing the permutation indeterminacy).
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Fig. 3: Algorithms performance in case of random mixing ma-
trix and Gaussian noise only environment

Note that for all algorithms the forgetting factor is set to be
β = 0.999 and the number of considered correlation matrices
is K = 10. Also, the number of samples used in the threshold
determination for the GHTFAPI algorithm is L = 1000.

To make sure our algorithm performs well in an adaptive manner,
we first run the simulation without adding the burst noise. From
Fig. 3, we can clearly notice that our proposed algorithm RA-
SOBI in its two versions as well as the A-SOBI outperform the
other state of the art algorithms when dealing with Gaussian
noise environment.

In addition, to evaluate the robustness of the algorithm, we sim-
ulate a burst noise as defined in (3) that occurs during four pe-
riods of time, namely: P1 = [1500, 1550], P3 = [2500, 2600],
P3 = [3500, 3600] and P4 = [4500, 4600] causing the SNR to
drop to −40dB.

Now, we investigate three scenarios with different mixing matri-
ces:

• First, we consider a general case with A being an (n× p)
random matrix.

• Then, we investigate a scenario where the mixing matrix
A is structured as:

A = [a(ω1); a(ω2); · · · ; a(ωp)] (31)

where:

a(ωk) = [1; ejωk , · · · , ejωk(n−1)]T , with ωk = π sin(θk).

θk is a direction of arrival chosen in our second experiment
as θ1 = 10◦, θ2 = 30◦ and θ3 = 50◦.

• Finally, we study the case where the system is slowly time
varying. For that, we use the latter structure of A while
linearly varying the directions of arrival such that it begins
with θ1(0) = 20◦, θ2(0) = 10◦, θ3(0) = −10◦ and it ends
at θ1(N−1) = 30◦, θ2(N−1) = 0◦, θ3(N−1) = −10◦

(i.e. θ3 is kept time invariant).
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Fig. 4: Algorithms performance in case of random mixing ma-
trix
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Fig. 5: Algorithms performance in case of directions of arrival
dependent mixing matrix

As we can see from Fig. 4, Fig. 5, and 6, it is clear that our
robust algorithm RA-SOBI (with its two versions) maintains
a good source separation throughout the entire testing period,
while the non-robust algorithms (A-SOBI, natural gradient and
the improved natural gradient [12]) collapse at the occurrence
of the first noise impulse.

VI. CONCLUSION

In this paper, we introduced robust adaptive algorithms for blind
source separation based on second order decorrelation. The
latter was achieved thanks to robust fast whitening, as well as
Givens rotations based joint diagonalization performed on robust
estimates of correlation matrices. Our algorithms are shown, via
simulation experiments, to be effective in an impulsive noise
environment, while having low computational complexity of
order O(np+ pK) flops per iteration.
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