Power Transformer Fault Prediction using Naive Bayes and Decision tree based on Dissolved Gas Analysis
DOI:
https://doi.org/10.53907/enpesj.v2i1.63Keywords:
Decision Tree, Naive Bayes, DGA, Input vectors, Power transformer faults, Accuracy rateAbstract
Power transformers are the basic elements of the power grid, which is directly related to the reliability of the electrical system. Many techniques were used to prevent power transformer failures, but the Dissolved Gas Analysis (DGA) remains the most effective one. Based on the DGA technique, this paper describes the use of two of the most effective machine learning algorithms: Naive Bayes and Decision Tree for the identification of power transformer’s faults. In our investigation, 9 different input vectors have been developed from widely known DGA techniques. 481 samples have been used and 6 types of faults have been considered. The evaluation result of the implementation of the proposed methods shows an effectiveness of 86.25% in power transformer’s fault recognition.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 ENP Engineering Science Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published under a Publisher Office user license are protected by copyright. Users may access, download, copy, translate, text and data mine the articles for non-commercial purposes provided that users:
- Cite the article using an appropriate bibliographic citation (i.e. author(s), journal, article title, volume, issue, page numbers, DOI and the link to the definitive published version)
- Maintain the integrity of the article
- Retain copyright notices and links to these terms and conditions so it is clear to other users what can and cannot be done with the article
- Ensure that, for any content in the article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party
- Any translations, for which a prior translation agreement with Publisher Office has not been established, must prominently display the statement: "This is an unofficial translation of an article that appeared in a Publisher Office publication. Publisher Office has not endorsed this translation."
This is a non commercial license where the use of published articles for commercial purposes is prohibited. Commercial purposes include:
- Copying or downloading articles, or linking to such postings, for further redistribution, sale or licensing, for a fee
- Copying, downloading or posting by a site or service that incorporates advertising with such content
- The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee
- Use of articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise.
- Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation.