Electrochemical Measurements of Ni / Graphene based Nanohybrids for Electrochemical Energy Storage “Supercapacitors”
DOI:
https://doi.org/10.53907/enpesj.v3i1.158Keywords:
Energy storage, Supercapacitors, Nanohybrid, Ni Hydroxide, Graphene Oxide, Electrochemical measurementAbstract
Given the issues related to the use of fossil fuels and water pollution, the development and the application of new smart nanomaterials for supercapacitors and biosensors has become a vital issue for human and industrial societies. Therefore, nanotechnology has given more interest to these areas via micro/nanosystems or nanohybrids characterized by interesting composition, significant porosity and texture at nanoscale. In this work, we have produced electroactive nanohybrids based on in-situ Ni mono-hydroxide few layers Graphene oxide "GO" using a simple and low cost hydrothermal technique under well-studied thermodynamic conditions (120 and 180 °C growth temperature), for performant supercapacitor devices. We have carried out the structural, morphological, textural and optical characterization of these products and consequently we have specified the relationship between their physico-chemical characteristics and their electrochemical properties for ulterior application. Thus, we have carried out various electrochemical measurements through Cyclic Voltammetry tests and we have marked the important electrochemical properties of these Ni/Graphene nanohybrids in two NaOH electrolyte concentrations (0.1 and 1 M) in order to improve the performance of supercapacitors, which have become a socio-economic issue with this nanotechnological development. Consequently, these obtained Ni/Graphene nanohybrids have shown a very interesting electrochemical results with specific capacities 1863 and 253 F.g-1 for the case of nanohybrid obtained at 6h/120°C in NaOH aqueous electrolyte with two different concentrations (1 and 0.1M), respectively. However, for a fixed electrolyte concentration of 1M NaOH, both nanohybrids obtained at 120 and 180°C gave specific capacity values around 1863 and 2981 F.g-1, respectively.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 ENP Engineering Science Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published under a Publisher Office user license are protected by copyright. Users may access, download, copy, translate, text and data mine the articles for non-commercial purposes provided that users:
- Cite the article using an appropriate bibliographic citation (i.e. author(s), journal, article title, volume, issue, page numbers, DOI and the link to the definitive published version)
- Maintain the integrity of the article
- Retain copyright notices and links to these terms and conditions so it is clear to other users what can and cannot be done with the article
- Ensure that, for any content in the article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party
- Any translations, for which a prior translation agreement with Publisher Office has not been established, must prominently display the statement: "This is an unofficial translation of an article that appeared in a Publisher Office publication. Publisher Office has not endorsed this translation."
This is a non commercial license where the use of published articles for commercial purposes is prohibited. Commercial purposes include:
- Copying or downloading articles, or linking to such postings, for further redistribution, sale or licensing, for a fee
- Copying, downloading or posting by a site or service that incorporates advertising with such content
- The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee
- Use of articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise.
- Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation.