Objective Evaluation of the Pathological Voice Based on Deep Learning Neural Networks in an Algerian hospital environment
DOI:
https://doi.org/10.53907/enpesj.v2i2.170Keywords:
Voice Pathology, Unilateral Laryngeal Paralysis, Deep Learning, LSTM Recurring Neural NetworksAbstract
In this study, we propose a method based on Recurrent Neural Networks, to objectively evaluate the process of rehabilitation of the pathological voice, in an Algerian clinical environment. We choose Unilateral Laryngeal Paralysis as the pathology of the voice. In this paper, we used a Deep Learning system of pathological voice detection by Long Short Term Memory neural model (LSTM). As the dysphony studied in our work concerns essentially the laryngeal vibration, we choose the acoustic parameters based on the instability of the frequency and the amplitude of the laryngeal vibration: Jitter and Shimmer, Noise parameters and Cepstraux MFCC coefficients (Mel Frequency Cepstral Coefficients). A pathological voice detection rate of 88.65% shows important results brought by the rehabilitation technique adopted in Algerian clinical setting. The exclusive and abusive use of hearing to evaluate the effect of speech rehabilitation in the Algerian hospital environment remains insufficient. It is important to correlate perceptual data with objective methods based on detection and classification methods by introducing relevant acoustic parameters, for an effective and objective management of vocal pathology assessment.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 ENP Engineering Science Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published under a Publisher Office user license are protected by copyright. Users may access, download, copy, translate, text and data mine the articles for non-commercial purposes provided that users:
- Cite the article using an appropriate bibliographic citation (i.e. author(s), journal, article title, volume, issue, page numbers, DOI and the link to the definitive published version)
- Maintain the integrity of the article
- Retain copyright notices and links to these terms and conditions so it is clear to other users what can and cannot be done with the article
- Ensure that, for any content in the article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party
- Any translations, for which a prior translation agreement with Publisher Office has not been established, must prominently display the statement: "This is an unofficial translation of an article that appeared in a Publisher Office publication. Publisher Office has not endorsed this translation."
This is a non commercial license where the use of published articles for commercial purposes is prohibited. Commercial purposes include:
- Copying or downloading articles, or linking to such postings, for further redistribution, sale or licensing, for a fee
- Copying, downloading or posting by a site or service that incorporates advertising with such content
- The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee
- Use of articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise.
- Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation.