Surface EMG signal segmentation based on HMM modelling: Application on Parkinson’s disease
DOI:
https://doi.org/10.53907/enpesj.v1i1.27Keywords:
surface EMG signal, EMG signal segmentation, muscle activity, wavelet analysis, HMM models, Parkinson diseaseAbstract
The study of burst electromyographic (EMG) activity periods during muscles contraction and relaxation is an important and challenging problem. It can find several applications like movement patterns analysis, human locomotion analysis and neuromuscular pathologies diagnosis such as Parkinson disease. This paper proposes a new frame work for detecting the onset (start) / offset (end) of burst EMG activity by segmenting the EMG signal in regions of muscle activity (AC) and non activity (NAC) using Discrete Wavelet Transform (DWT) for feature extraction and the Hidden Markov Models (HMM) for regions classification in AC and NAC classes. The objective of this work is to design an efficient segmentation system of EMG signals recorded from Parkinsonian group and control group (healthy). The results evaluated on ECOTECH project database using principally the Accuracy (Acc) and the error rate (Re) criterion show highest performance by using HMM models of 2 states associated with GMM of 3 Gaussians, combined with LWE (Log Wavelet decomposition based Energy) descriptor based on Coiflet wavelet mother with decomposition level of 4. A comparative study with state of the art methods shows the efficiency of our approach that reduces the mean error rate by a factor close to 2 for healthy subjects and close to 1.3 for Parkinsonian subjects.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 ENP Engineering Science Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published under a Publisher Office user license are protected by copyright. Users may access, download, copy, translate, text and data mine the articles for non-commercial purposes provided that users:
- Cite the article using an appropriate bibliographic citation (i.e. author(s), journal, article title, volume, issue, page numbers, DOI and the link to the definitive published version)
- Maintain the integrity of the article
- Retain copyright notices and links to these terms and conditions so it is clear to other users what can and cannot be done with the article
- Ensure that, for any content in the article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party
- Any translations, for which a prior translation agreement with Publisher Office has not been established, must prominently display the statement: "This is an unofficial translation of an article that appeared in a Publisher Office publication. Publisher Office has not endorsed this translation."
This is a non commercial license where the use of published articles for commercial purposes is prohibited. Commercial purposes include:
- Copying or downloading articles, or linking to such postings, for further redistribution, sale or licensing, for a fee
- Copying, downloading or posting by a site or service that incorporates advertising with such content
- The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee
- Use of articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise.
- Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation.